72 research outputs found

    Isolation and ultrastructural characterization of squid synaptic vesicles

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2011. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 220 (2011): 89-96.Synaptic vesicles contain a variety of proteins and lipids that mediate fusion with the pre-synaptic membrane. Although the structures of many synaptic vesicle proteins are known, an overall picture of how they are organized at the vesicle surface is lacking. In this paper, we describe a better method for the isolation of squid synaptic vesicles and characterize the results. For highly pure and intact synaptic vesicles from squid optic lobe, glycerol density gradient centrifugation was the key step. Different electron microscopic methods show that vesicle membrane surfaces are largely covered with structures corresponding to surface proteins. Each vesicle contains several stalked globular structures that extend from the vesicle surface and are consistent with the V-ATPase. BLAST search of a library of squid expressed sequence tags identifies 10 V-ATPase subunits, which are expressed in the squid stellate ganglia. Negative-stain tomography demonstrates directly that vesicles flatten during the drying step of negative staining, and furthermore shows details of individual vesicles and other proteins at the vesicle surface.JAD is supported by the RI-INBRE program award # P20RR016457-10 from the National Center for Research Resources (NCRR), NIH

    The Prodomain of the Bordetella Two-Partner Secretion Pathway Protein FhaB Remains Intracellular yet Affects the Conformation of the Mature C-terminal Domain

    Get PDF
    Two-Partner Secretion (TPS) systems use β-barrel proteins of the Omp85-TpsB superfamily to transport large exoproteins across the outer membranes of Gram-negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C-terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly-located mature C-terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C-terminus of the prodomain is retained intracellularly and that sequences within the N-terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C-terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly-located prodomain affects the final conformation of the extracellularly-located MCD, which, we hypothesize, triggers cleavage and degradation of the prodomain

    The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells

    Get PDF
    Expression of the long noncoding RNA (lncRNA) SPRY4-IT1 is low in normal human melanocytes but high in melanoma cells. siRNA knockdown of SPRY4-IT1 blocks melanoma cell invasion and proliferation, and increases apoptosis. To investigate its function further, we affinity purified SPRY4-IT1 from melanoma cells and used mass spectrometry to identify the protein lipin 2, an enzyme that converts phosphatidate to diacylglycerol (DAG), as a major binding partner. SPRY4-IT1 knockdown increases the accumulation of lipin2 protein and upregulate the expression of diacylglycerol O-acyltransferase 2 (DGAT2) an enzyme involved in the conversion of DAG to triacylglycerol (TAG). When SPRY4-IT1 knockdown and control melanoma cells were subjected to shotgun lipidomics, an MS-based assay that permits the quantification of changes in the cellular lipid profile, we found that SPRY4-IT1 knockdown induced significant changes in a number of lipid species, including increased acyl carnitine, fatty acyl chains, and triacylglycerol (TAG). Together, these results suggest the possibility that SPRY4-IT1 knockdown may induce apoptosis via lipin 2-mediated alterations in lipid metabolism leading to cellular lipotoxicity

    Epigenetic Regulation of MicroRNA Genes and the Role of miR-34b in Cell Invasion and Motility in Human Melanoma

    Get PDF
    Invasive melanoma is the most lethal form of skin cancer. The treatment of melanoma-derived cell lines with 5-aza-2\u27-deoxycytidine (5-Aza-dC) markedly increases the expression of several miRNAs, suggesting that the miRNA-encoding genes might be epigenetically regulated, either directly or indirectly, by DNA methylation. We have identified a group of epigenetically regulated miRNA genes in melanoma cells, and have confirmed that the upstream CpG island sequences of several such miRNA genes are hypermethylated in cell lines derived from different stages of melanoma, but not in melanocytes and keratinocytes. We used direct DNA bisulfite and immunoprecipitated DNA (Methyl-DIP) to identify changes in CpG island methylation in distinct melanoma patient samples classified as primary in situ, regional metastatic, and distant metastatic. Two melanoma cell lines (WM1552C and A375 derived from stage 3 and stage 4 human melanoma, respectively) were engineered to ectopically express one of the epigenetically modified miRNA: miR-34b. Expression of miR-34b reduced cell invasion and motility rates of both WM1552C and A375, suggesting that the enhanced cell invasiveness and motility observed in metastatic melanoma cells may be related to their reduced expression of miR-34b. Total RNA isolated from control or miR-34b-expressing WM1552C cells was subjected to deep sequencing to identify gene networks around miR-34b. We identified network modules that are potentially regulated by miR-34b, and which suggest a mechanism for the role of miR-34b in regulating normal cell motility and cytokinesis

    Genome-wide methylated CpG island profiles of melanoma cells reveal a melanoma coregulation network

    Get PDF
    Metastatic melanoma is a malignant cancer with generally poor prognosis, with no targeted chemotherapy. To identify epigenetic changes related to melanoma, we have determined genome-wide methylated CpG island distributions by next-generation sequencing. Melanoma chromosomes tend to be differentially methylated over short CpG island tracts. CpG islands in the upstream regulatory regions of many coding and noncoding RNA genes, including, for example, TERC, which encodes the telomerase RNA, exhibit extensive hypermethylation, whereas several repeated elements, such as LINE 2, and several LTR elements, are hypomethylated in advanced stage melanoma cell lines. By using CpG island demethylation profiles, and by integrating these data with RNA-seq data obtained from melanoma cells, we have identified a co-expression network of differentially methylated genes with significance for cancer related functions. Focused assays of melanoma patient tissue samples for CpG island methylation near the noncoding RNA gene SNORD-10 demonstrated high specificity

    Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent

    Get PDF
    The epidermal compartment is complex and organized into several strata composed of keratinocytes (KCs), including basal, spinous, granular, and corniWed layers. The continuous process of self-renewal and barrier formation is dependent on a homeostatic balance achieved amongst KCs involving proliferation, diVerentiation, and cell death. To determine genes responsible for initiating and maintaining a corniWed epidermis, organotypic cultures comprised entirely of stratiWed KCs creating epidermal equivalents (EE) were raised from a submerged state to an air/liquid (A/L) interface. Compared to the array proWle of submerged cultures containing KCs predominantly in a proliferative (relatively undiVerentiated) state, EEs raised to an A/L interface displayed a remarkably consistent and distinct proWle of mRNAs. Cultures lifted to an A/L interface triggered the induction of gene groups that regulate proliferation, diVerentiation, and cell death. Next, diVerentially expressed microRNAs (miRNAs) and long noncoding (lncRNA) RNAs were identiWed in EEs. Several diVerentially expressed miRNAs were validated by qRT-PCR and Northern blots. miRNAs 203, 205 and Let-7b were up-regulated at early time points (6, 18 and 24 h) but downregulated by 120 h. To study the lncRNA regulation in EEs, we proWled lncRNA expression by microarray and validated the results by qRT-PCR. Although the diVerential expression of several lncRNAs is suggestive of a role in epidermal diVerentiation, their biological functions remain to be elucidated. The current studies lay the foundation for relevant model systems to address such fundamentally important biological aspects of epidermal structure and function in normal and diseased human skin

    Exosome-mediated MIR211 modulates tumor microenvironment via the DUSP6-ERK5 axis and contributes to BRAFV600E inhibitor resistance in melanoma

    Get PDF
    The microRNA MIR211 is an important regulator of melanoma tumor cell behavior. Previous studies suggested that in certain tumors, MIR211 acted as a tumor suppressor while in others it behaved as an oncogenic regulator. When MIR211 is expressed in BRAFV600E-mutant A375 melanoma cells in mouse xenografts, it promotes aggressive tumor growth accompanied by increased cellular proliferation and angiogenesis. We demonstrate that MIR211 is transferred to adjacent cells in the tumor micro-environment via exosomes. Cross-species genome-wide transcriptomic analysis showed that human tumor-derived MIR211 interacts with the mouse transcriptome in the tumor microenvironment, and activates ERK5 signaling in human tumor cells via the modulation of a feedback loop. Human miR211 directly inhibits human DUSP6 protein phosphatase at the post-transcriptional level. We provide support for the hypothesis that DUSP6 inhibition conferred resistance of the human tumor cells to the BRAF inhibitor vemurafenib and to the MEK inhibitor cobimetinib, with associated increases in ERK5 phosphorylation. These findings are consistent with a model in which MIR211 regulates melanoma tumor proliferation and BRAF inhibitor resistance by inducing ERK5 signaling within the complex tumor microenvironment. We propose that the MIR211-ERK5 axis represents an important and sensitive regulatory arm in melanoma with potential theranostic applications

    Exosome-mediated MIR211 modulates tumor microenvironment via the DUSP6-ERK5 axis and contributes to BRAFV600E inhibitor resistance in melanoma

    Get PDF
    The microRNA MIR211 is an important regulator of melanoma tumor cell behavior. Previous studies suggested that in certain tumors, MIR211 acted as a tumor suppressor while in others it behaved as an oncogenic regulator. When MIR211 is expressed in BRAFV600E-mutant A375 melanoma cells in mouse xenografts, it promotes aggressive tumor growth accompanied by increased cellular proliferation and angiogenesis. We demonstrate that MIR211 is transferred to adjacent cells in the tumor micro-environment via exosomes. Cross-species genome-wide transcriptomic analysis showed that human tumor-derived MIR211 interacts with the mouse transcriptome in the tumor microenvironment, and activates ERK5 signaling in human tumor cells via the modulation of a feedback loop. Human miR211 directly inhibits human DUSP6 protein phosphatase at the post-transcriptional level. We provide support for the hypothesis that DUSP6 inhibition conferred resistance of the human tumor cells to the BRAF inhibitor vemurafenib and to the MEK inhibitor cobimetinib, with associated increases in ERK5 phosphorylation. These findings are consistent with a model in which MIR211 regulates melanoma tumor proliferation and BRAF inhibitor resistance by inducing ERK5 signaling within the complex tumor microenvironment. We propose that the MIR211-ERK5 axis represents an important and sensitive regulatory arm in melanoma with potential theranostic applications

    Spreading order: religion, cooperative niche construction, and risky coordination problems

    Get PDF
    Adaptationists explain the evolution of religion from the cooperative effects of religious commitments, but which cooperation problem does religion evolve to solve? I focus on a class of symmetrical coordination problems for which there are two pure Nash equilibriums: (1) ALL COOPERATE, which is efficient but relies on full cooperation; (2) ALL DEFECT, which is inefficient but pays regardless of what others choose. Formal and experimental studies reveal that for such risky coordination problems, only the defection equilibrium is evolutionarily stable. The following makes sense of otherwise puzzling properties of religious cognition and cultures as features of cooperative designs that evolve to stabilise such risky exchange. The model is interesting because it explains lingering puzzles in the data on religion, and better integrates evolutionary theories of religion with recent, well-motivated models of cooperative niche construction
    corecore