34 research outputs found
Recommended from our members
Caveolin-1 Phosphorylation Is Essential for Axonal Growth of Human Neurons Derived From iPSCs.
Proper axonal growth and guidance is essential for neuron differentiation and development. Abnormal neuronal development due to genetic or epigenetic influences can contribute to neurological and mental disorders such as Down syndrome, Rett syndrome, and autism. Identification of the molecular targets that promote proper neuronal growth and differentiation may restore structural and functional neuroplasticity, thus improving functional performance in neurodevelopmental disorders. Using differentiated human neuronal progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs), the present study demonstrates that during early stage differentiation of human NPCs, neuron-targeted overexpression constitutively active Rac1 (Rac1CA) and constitutively active Cdc42 (Cdc42CA) enhance expression of P-Cav-1, T-Cav-1, and P-cofilin and increases axonal growth. Similarly, neuron-targeted over-expression of Cav-1 (termed SynCav1) increases axonal development by increasing both axon length and volume. Moreover, inhibition of Cav-1(Y14A) phosphorylation blunts Rac1/Cdc42-mediated both axonal growth and differentiation of human NPCs and SynCav1(Y14A)-treated NPCs exhibited blunted axonal growth. These results suggest that: (1) SynCav1-mediated dendritic and axonal growth in human NPCs is dependent upon P-Cav-1, (2) P-Cav-1 is necessary for proper axonal growth during early stages of neuronal differentiation, and (3) Rac1/Cdc42CA-mediated neuronal growth is in part dependent upon P-Cav-1. In conclusion, Cav-1 phosphorylation is essential for human neuronal axonal growth during early stages of neuronal differentiation
A probabilistic generative model for GO enrichment analysis
The Gene Ontology (GO) is extensively used to analyze all types of high-throughput experiments. However, researchers still face several challenges when using GO and other functional annotation databases. One problem is the large number of multiple hypotheses that are being tested for each study. In addition, categories often overlap with both direct parents/descendents and other distant categories in the hierarchical structure. This makes it hard to determine if the identified significant categories represent different functional outcomes or rather a redundant view of the same biological processes. To overcome these problems we developed a generative probabilistic model which identifies a (small) subset of categories that, together, explain the selected gene set. Our model accommodates noise and errors in the selected gene set and GO. Using controlled GO data our method correctly recovered most of the selected categories, leading to dramatic improvements over current methods for GO analysis. When used with microarray expression data and ChIP-chip data from yeast and human our method was able to correctly identify both general and specific enriched categories which were overlooked by other methods
Preterm birth associated with maternal fine particulate matter exposure : A global, regional and national assessment
Reduction of preterm births (< 37 completed weeks of gestation) would substantially reduce neonatal and infant mortality, and deleterious health effects in survivors. Maternal fine particulate matter (PM2.5) exposure has been identified as a possible risk factor contributing to preterm birth. The aim of this study was to produce the first estimates of ambient PM2.5-associated preterm births for 183 individual countries and globally. To do this, national, population-weighted, annual average ambient PM2.5 concentration, preterm birth rate and number of livebirths were combined to calculate the number of PM2.5-associated preterm births in 2010 for 183 countries. Uncertainty was quantified using Monte-Carlo simulations, and analyses were undertaken to investigate the sensitivity of PM2.5-associated preterm birth estimates to assumptions about the shape of the concentration-response function at low and high PM2.5 exposures, inclusion of provider-initiated preterm births, and exposure to indoor air pollution. Globally, in 2010, the number of PM2.5-associated preterm births was estimated as 2.7 million (1.8â3.5 million, 18% (12â24%) of total preterm births globally) with a low concentration cut-off (LCC) set at 10 ÎŒg mâ 3, and 3.4 million (2.4â4.2 million, 23% (16â28%)) with a LCC of 4.3 ÎŒg mâ 3. South and East Asia, North Africa/Middle East and West sub-Saharan Africa had the largest contribution to the global total, and the largest percentage of preterm births associated with PM2.5. Sensitivity analyses showed that PM2.5-associated preterm birth estimates were 24% lower when provider-initiated preterm births were excluded, 38â51% lower when risk was confined to the PM2.5 exposure range in the studies used to derive the effect estimate, and 56% lower when mothers who live in households that cook with solid fuels (and whose personal PM2.5 exposure is likely dominated by indoor air pollution) were excluded. The concentration-response function applied here derives from a meta-analysis of studies, most of which were conducted in the US and Europe, and its application to the areas of the world where we estimate the greatest effects on preterm births remains uncertain. Nevertheless, the substantial percentage of preterm births estimated to be associated with anthropogenic PM2.5 (18% (13%â24%) of total preterm births globally) indicates that reduction of maternal PM2.5 exposure through emission reduction strategies should be considered alongside mitigation of other risk factors associated with preterm births
Recommended from our members
Impact of blood factors on endothelial cell metabolism and function in two diverse heart failure models.
Role of blood-based factors in development and progression of heart failure (HF) is poorly characterized. Blood contains factors released during pathophysiological states that may impact cellular function and provide mechanistic insights to HF management. We tested effects of blood from two distinct HF models on cardiac metabolism and identified possible cellular targets of the effects. Blood plasma was obtained from daunorubicin- and myocardial infarction-induced HF rabbits (Dauno-HF and MI-HF) and their controls (Dauno-Control and MI-Control). Effects of plasma on bioenergetics of myocardial tissue from healthy mice and cellular cardiac components were assessed using high-resolution respirometry and Seahorse flux analyzer. Since endothelial cell respiration was profoundly affected by HF plasma, effects of plasma on endothelial cell barrier function and death were further evaluated. Western-blotting and electron microscopy were performed to evaluate mitochondrial proteins and morphology. Brief exposure to HF plasma decreased cardiac tissue respiration. Endothelial cell respiration was most impacted by exposure to HF plasma. Endothelial cell monolayer integrity was decreased by incubation with Dauno-HF plasma. Apoptosis and necrosis were increased in cells incubated with Dauno-HF plasma for 24 h. Down-regulation of voltage-dependent anion-selective channel (VDAC)-1, translocase of outer membrane 20 (Tom20), and mitochondrial fission factor (MFF) in cells exposed to Dauno-HF plasma and mitochondrial signal transducer and activator of transcription 3 (Stat3) and MFF in cells exposed to MI-HF plasma were observed. Mitochondrial structure was disrupted in cells exposed to HF plasma. These findings indicate that endothelial cells and mitochondrial structure and function may be primary target where HF pathology manifests and accelerates. High-throughput blood-based screening of HF may provide innovative ways to advance disease diagnosis and management
Recommended from our members
Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy
Cirrhotic cardiomyopathy is a clinical syndrome in patients with liver cirrhosis characterized by blunted cardiac contractile responses to stress and/or heart rate-corrected QT (QTc) interval prolongation. Caveolin-3 (Cav-3) plays a critical role in cardiac protection and is an emerging therapeutic target for heart disease. We investigated the protective role of cardiac-specific overexpression (OE) of Cav-3 in cirrhotic cardiomyopathy. Biliary fibrosis was induced in male Cav-3 OE mice and transgene negative (TGneg) littermates by feeding a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC; 0.1%) for 3 wk. Liver pathology and blood chemistries were assessed, and stress echocardiography, telemetry, and isolated heart perfusion studies to assess adrenergic responsiveness were performed. Cav-3 OE mice showed a similar degree of hyperdynamic contractility, pulmonary hypertension, and QTc interval prolongation as TGneg mice after 3 wk of DDC diet. Blunted systolic responses were shown in both DDC-fed Cav-3 OE and TGneg hearts after in vivo isoproterenol challenge. However, QTc interval prolongation after in vivo isoproterenol challenge was significantly less in DDC-fed Cav-3 OE hearts compared with DDC-fed TGneg hearts. In ex vivo perfused hearts, where circulatory factors are absent, isoproterenol challenge showed hearts from DDC-fed Cav-3 OE mice had better cardiac contractility and relaxation compared with DDC-fed TGneg hearts. Although Cav-3 OE in the heart did not prevent cardiac alterations in DDC-induced biliary fibrosis, cardiac expression of Cav-3 reduced QTc interval prolongation after adrenergic stimulation in cirrhosis.NEW & NOTEWORTHY Prevalence of cirrhotic cardiomyopathy is up to 50% in cirrhotic patients, and liver transplantation is the only treatment. However, cirrhotic cardiomyopathy is associated with perioperative morbidity and mortality after liver transplantation; therefore, management of cirrhotic cardiomyopathy is crucial for successful liver transplantation. This study shows cardiac myocyte specific overexpression of caveolin-3 (Cav-3) provides better cardiac contractile responses and less corrected QT prolongation during adrenergic stress in a cirrhotic cardiomyopathy model, suggesting beneficial effects of Cav-3 expression in cirrhotic cardiomyopathy
Recommended from our members
Neuronâtargeted caveolinâ1 improves neuromuscular function and extends survival in SOD1G93A mice
Interventions that preserve motor neurons or restore functional motor neuroplasticity may extend longevity in amyotrophic lateral sclerosis (ALS). Delivery of neurotrophins may potentially revive degenerating motor neurons, yet this approach is dependent on the proper subcellular localization of neurotrophin receptor (NTR) to plasmalemmal signaling microdomains, termed membrane/lipid rafts (MLRs). We previously showed that overexpression of synapsin-driven caveolin-1 (Cav-1) (SynCav1) increases MLR localization of NTR [e.g., receptor tyrosine kinase B (TrkB)], promotes hippocampal synaptic and neuroplasticity, and significantly improves learning and memory in aged mice. The present study crossed a SynCav1 transgene-positive (SynCav1+) mouse with the mutant human superoxide dismutase glycine to alanine point mutation at amino acid 93 (hSOD1G93A) mouse model of ALS. When compared with hSOD1G93A, hSOD1G93A/SynCav1+ mice exhibited greater body weight and longer survival as well as better motor function. Microscopic analyses of hSOD1G93A/SynCav1+ spinal cords revealed preserved spinal cord α-motor neurons and preserved mitochondrial morphology. Moreover, hSOD1G93A/SynCav1+ spinal cords contained more MLRs (cholera toxin subunit B positive) and MLR-associated TrkB and Cav-1 protein expression. These findings demonstrate that SynCav1 delays disease progression in a mouse model of ALS, potentially by preserving or restoring NTR expression and localization to MLRs.-Sawada, A., Wang, S., Jian, M., Leem, J., Wackerbarth, J., Egawa, J., Schilling, J. M., Platoshyn, O., Zemljic-Harpf, A., Roth, D. M., Patel, H. H., Patel, P. M., Marsala, M., Head, B. P. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1G93A mice
Proteomic Characterization of Plasmid pLA1 for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Marine Bacterium, <i>Novosphingobium pentaromativorans</i> US6-1
<div><p><i>Novosphingobium pentaromativorans</i> US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs). Genome sequence analysis revealed that the large plasmid pLA1 present in <i>N. pentaromativorans</i> US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of <i>N. pentaromativorans</i> US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs) identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, <i>N. pentaromativorans</i> US6-1 cultured with <i>p</i>-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that <i>N. pentaromativorans</i> US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in <i>N. pentaromativorans</i> US6-1.</p></div
Recommended from our members
Synapsin-caveolin-1 gene therapy preserves neuronal and synaptic morphology and prevents neurodegeneration in a mouse model of AD.
Alzheimer's disease (AD) is the most common form of neurodegeneration and cognitive dysfunction in the elderly. Identifying molecular signals that mitigate and reverse neurodegeneration in AD may be exploited therapeutically. Transgenic AD mice (PSAPP) exhibit learning and memory deficits at 9 and 11 months, respectively, with associated decreased expression of caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein necessary for synaptic and neuroplasticity. Neuronal-targeted gene therapy using synapsin-Cav-1 cDNA (SynCav1) was delivered to the hippocampus of PSAPP mice at 3 months using adeno-associated virus serotype 9 (AAV9). Bilateral SynCav1 gene therapy was able to preserve MLRs profile, learning and memory, hippocampal dendritic arbor, synaptic ultrastructure, and axonal myelin content in 9- and 11-month PSAPP mice, independent of reducing toxic amyloid deposits and astrogliosis. Our data indicate that SynCav1 gene therapy may be an option for AD and potentially in other forms of neurodegeneration of unknown etiology