26 research outputs found

    Antibodies for Assessing Circadian Clock Proteins in the Rodent Suprachiasmatic Nucleus

    Get PDF
    Research on the mechanisms underlying circadian rhythmicity and the response of brain and body clocks to environmental and physiological challenges requires assessing levels of circadian clock proteins. Too often, however, it is difficult to acquire antibodies that specifically and reliably label these proteins. Many of these antibodies also lack appropriate validation. The goal of this project was to generate and characterize antibodies against several circadian clock proteins. We examined mice and hamsters at peak and trough times of clock protein expression in the suprachiasmatic nucleus (SCN). In addition, we confirmed specificity by testing the antibodies on mice with targeted disruption of the relevant genes. Our results identify antibodies against PER1, PER2, BMAL1 and CLOCK that are useful for assessing circadian clock proteins in the SCN by immunocytochemistry

    Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus

    No full text
    The suprachiasmatic nucleus (SCN) is the locus of a hypothalamic circadian clock that synchronizes physiological and behavioral responses to the daily light-dark cycle. The nucleus is composed of functionally and peptidergically diverse populations of cells for which distinct electrochemical properties are largely unstudied. SCN neurons containing gastrin-releasing peptide (GRP) receive direct retinal input via the retinohypothalamic tract. We targeted GRP neurons with a green fluorescent protein (GFP) marker for whole cell patch-clamping. In these neurons, we studied short (0.5-1.5 h)- and long-term (2-6 h) effects of a 1-h light pulse (LP) given 2 h after lights off [Zeitgeber time (ZT) 14:00-15:00] on membrane potential and spike firing. In brain slices taken from light-exposed animals, cells were depolarized, and spike firing rate increased between ZT 15:30 and 16:30. During a subsequent 4-h period beginning around ZT 17:00, GRP neurons from light-exposed animals were hyperpolarized by ~15 mV. None of these effects was observed in GRP neurons from animals not exposed to light or in immediately adjacent non-GRP neurons whether or not exposed to light. Depolarization of GRP neurons was associated with a reduction in GABA A-dependent synaptic noise, whereas hyperpolarization was accompanied both by a loss of GABA A drive and suppression of a TTX-resistant leakage current carried primarily by Na. This suggests that, in the SCN, exposure to light may induce a short-term increase in GRP neuron excitability mediated by retinal neurotransmitters and neuropeptides, followed by long-term membrane hyperpolarization resulting from suppression of a leakage current, possibly resulting from genomic signals. © 2011 the American Physiological Society

    Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus

    No full text
    The suprachiasmatic nucleus (SCN) of the hypothalamus is the neural locus of the circadian clock. To explore the organization of the SCN, two strains of transgenic mice, each bearing a jellyfish green fluorescent protein (GFP) reporter, were used. In one, GFP was driven by the promoter region of the mouse Period1 gene (mPer1) (Per1::GFP mouse), whereas in the other, GFP was inserted in the promoter region of calbindin-D(28K)-bacterial artificial chromosome (CalB::GFP mouse). In the latter mouse, GFP-containing SCN cells are immunopositive for gastrin-releasing peptide. In both mouse lines, light-induced Per1 mRNA and Fos are localized to the SCN subregion containing gastrin-releasing peptide. Double-label immunohistochemistry reveals that most gastrin-releasing peptide cells (approximately 70%) contain Fos after a brief light pulse. To determine the properties of SCN cells in this light-responsive region, we examined the expression of rhythmic Period genes and proteins. Gastrin-releasing peptide-containing cells do not express detectable rhythms in these key components of the molecular circadian clock. The results support the view that the mammalian SCN is composed of functionally distinct cell groups, of which some are light induced and others are rhythmic with respect to clock gene expression. Furthermore, the findings suggest that gastrin-releasing peptide is a potential mediator of intercellular communication between light-induced and oscillator cells within the SCN

    A short half-life GFP mouse model for analysis of suprachiasmatic nucleus organization.

    No full text
    Period1 (Per1) is one of several clock genes driving the oscillatory mechanisms that mediate circadian rhythmicity. Per1 mRNA and protein are highly expressed in the suprachiasmatic nuclei, which contain oscillator cells that drive circadian rhythmicity in physiological and behavioral responses. We examined a transgenic mouse in which degradable green fluorescent protein (GFP) is driven by the mPer1 gene promoter. This mouse expresses precise free-running rhythms and characteristic light induced phase shifts. GFP protein (reporting Per1 mRNA) is expressed rhythmically as measured by either fluorescence or immunocytochemistry. In addition the animals show predicted rhythms of Per1 mRNA, PER1 and PER2 proteins. The localization of GFP overlaps with that of Per1 mRNA, PER1 and PER2 proteins. Together, these results suggest that GFP reports rhythmic Per1 expression. A surprising finding is that, at their peak expression time GFP, Per1 mRNA, PER1 and PER2 proteins are absent or not detectable in a subpopulation of SCN cells located in the core region of the nucleus.</p
    corecore