333 research outputs found

    Piston versus Scissors: Chemotaxis Receptors versus Sensor His-Kinase Receptors in Two-Component Signaling Pathways

    Get PDF
    In this issue of Structure, Molnar and colleagues present a pair of important advances: (1) a method to analyze multiple signaling states in on-off switch proteins and (2) evidence for a scissors-type mechanism of on-off switching in a full-length, membrane-bound receptor of the sensor histidine-kinase class

    Chloride binding to the anion transport binding sites of band 3. A 35Cl NMR study

    Get PDF
    Band 3 is an integral membrane protein that exchanges anions across the red cell membrane. Due to the abundance and the high turnover rate of the band 3 transport unit, the band 3 system is the most heavily used ion-transport system in a typical vertebrate organism. Here we show that 35Cl NMR enables direct and specific observation of substrate Cl- binding to band 3 transport sites, which are identified by a variety of criteria: (a) the sites are inhibited by 4,4'- dinitrostilbene -2,2'- disulfonate, which is known to inhibit competitively Cl- binding to band 3 transport sites; (b) the sites have affinities for 4,4'- dinitrostilbene -2,2'-disulfonate and Cl- that are quantitatively similar to the known affinities of band 3 transport sites for these anions; and (c) the sites have relative affinities for Cl-, HCO-3, F-, and I- that are quantitatively similar to the known relative affinities of band 3 transport sites for these anions. The 35Cl NMR assay also reveals a class of low affinity Cl- binding sites (KD much greater than 0.5 M) that are not affected by 4,4'- dinitrostilbene -2,2'- disulfonate. These low affinity sites may be responsible for the inhibition of band 3 catalyzed anion exchange that has been previously observed at high [Cl-]. In the following paper the 35Cl NMR assay is used to resolve the band 3 transport sites on opposite sides of the membrane, thereby enabling direct observation of the transmembrane recruitment of transport sites

    The minimal structure containing the band 3 anion transport site. A 35Cl NMR study

    Get PDF
    35Cl NMR, which enables observation of chloride binding to the anion transport site on band 3, is used in the present study to determine the minimal structure containing the intact transport site. Removal of cytoskeletal and other nonintegral membrane proteins, or removal of the 40-kDa cytoskeletal domain of band 3, each leave the transport site intact. Similarly, cleavage of the 52-kDa transport domain into 17- and 35-kDa fragments by chymotrypsin leaves the transport site intact. Extensive proteolysis by papain reduces the integral red cell membrane proteins to their transmembrane segments. Papain treatment removes approximately 60% of the extramembrane portion of the transport domain and produces small fragments primarily in the range 3-7 kDa, with 5 kDa being most predominant. Papain treatment damages, but does not destroy, chloride binding to the transport site; thus, the minimal structure containing the transport site is composed solely of transmembrane segments. In short, the results are completely consistent with a picture in which the transport site is buried in the membrane where it is protected from proteolysis; the transmembrane segments that surround the transport site are held together by strong attractive forces within the bilayer; and the transport site is accessed by solution chloride via an anion channel leading from the transport site to the solution

    The Piston Rises Again

    Get PDF
    Previous evidence has indicated that the transmembrane signal in bacterial chemoeceptors is carried by the piston displacement of a membrane-spanning signaling helix. Hendrickson and coworkers (Cheung and Hendrickson, 2009; Moore and Hendrickson, 2009) now provide structural evidence that suggests piston transmembrane signaling is widely conserved in bacterial receptors that control ubiquitous two-component signaling pathways

    Halide binding by the purified halorhodopsin chromoprotein. II. New chloride-binding sites revealed by 35Cl NMR

    Get PDF
    Halorhodopsin is a light-driven chloride pump in the cell membrane of Halobacterium halobium. Recently, a polypeptide of apparent Mr = 20,000 has been purified that contains the halorhodopsin chromophore. Here we use 35Cl NMR to show that the purified chromoprotein possesses two previously unknown classes of chloride-binding sites. One class exhibits a low affinity (KD much greater than 1 M) for chloride and bromide. The second class exhibits a higher affinity (KD = 110 ± 50 mM) for chloride and also binds other anions according to the affinity series I-, SCN- greater than Br-, NO-3 greater than Cl- greater than F- , citrate. Both classes of NMR site remain intact at pH 11, indicating that the essential positive charges are provided by arginine. Also, both classes are unaffected by bleaching, suggesting that the sites are not in the immediate vicinity of the halorhodopsin chromophore. Although the chromoprotein also appears to contain the chloride- transport site (Steiner, M., Oesterhelt, D., Ariki, M., and Lanyi, J. K. (1984) J. Biol. Chem. 259, 2179-2184), this site was not detected by 35Cl NMR, suggesting that the transport site is in the interior of the protein where it is sampled slowly by chloride in the medium. It is proposed that the purified chromoprotein possesses a channel leading from the medium to the transport site and that the channel contains the high affinity NMR site which facilitates the migration of chloride between the medium and the transport site. We have also used 35Cl NMR to study chloride binding to purified monomeric bacteriorhodopsin; however, this protein contains no detectable chloride-binding sites

    Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering

    Get PDF
    CheY, the 14-kDa response regulator protein of the Escherichia coli chemotaxis pathway, is activated by phosphorylation of Asp57. In order to probe the structural changes associated with activation, an approach which combines 19F NMR, protein engineering, and the known crystal structure of one conformer has been utilized. This first of two papers examines the effects of Mg(II) binding and phosphorylation on the conformation of CheY. The molecule was selectively labeled at its six phenylalanine positions by incorporation of 4-fluorophenylalanine, which yielded no significant effect on activity. One of these 19F probe positions monitored the vicinity of Lys109, which forms a salt bridge to Asp57 in the apoprotein and has been proposed to act as a structural "switch" in activation. 19F NMR chemical shift studies of the labeled protein revealed that the binding of the cofactor Mg(II) triggered local structural changes in the activation site, but did not perturb the probe of the Lys109 region. The structural changes associated with phosphorylation were then examined, utilizing acetyl phosphate to chemically generate phsopho-CheY during NMR acquisition. Phosphorylation triggered a long-range conformational change extending from the activation site to a cluster of 4 phenylalanine residues at the other end of the molecule. However, phosphorylation did not perturb the probe of Lys109. The observed phosphorylated conformer is proposed to be the first step in the activation of CheY; later steps appear to perturb Lys109, as evidenced in the following paper. Together these results may give insight into the activation of other prokaryotic response regulators

    Self-Induced Docking Site of a Deeply Embedded Peripheral Membrane Protein

    Get PDF
    AbstractAs a first step toward understanding the principles of the targeting of C2 domains to membranes, we have carried out a molecular dynamics simulation of the C2 domain of cytosolic phospholipase A2 (cPLA2-C2) in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer at constant pressure and temperature (NPT, 300K and 1atm). Using the high-resolution crystal structure of cPLA2-C2 as a starting point, we embedded two copies of the C2 domain into a preequilibrated membrane at the depth and orientation previously defined by electron paramagnetic resonance (EPR). Noting that in the membrane-bound state the three calcium binding loops are complexed to two calcium ions, we initially restrained the calcium ions at the membrane depth determined by EPR. But the depth and orientation of the domains remained within EPR experimental errors when the restraints were later removed. We find that the thermally disordered, chemically heterogeneous interfacial zones of phosphatidylcholine bilayers allow local lipid remodeling to produce a nearly perfect match to the shape and polarity of the C2 domain, thereby enabling the C2 domain to assemble and optimize its own lipid docking site. The result is a cuplike docking site with a hydrophobic bottom and hydrophilic rim. Contrary to expectations, we did not find direct interactions between the protein-bound calcium ions and lipid headgroups, which were sterically excluded from the calcium binding cleft. Rather, the lipid phosphate groups provided outer-sphere calcium coordination through intervening water molecules. These results show that the combined use of high-resolution protein structures, EPR measurements, and molecular dynamics simulations provides a general approach for analyzing the molecular interactions between membrane-docked proteins and lipid bilayers

    Chemotaxis Receptor Complexes: From Signaling to Assembly

    Get PDF
    Complexes of chemoreceptors in the bacterial cytoplasmic membrane allow for the sensing of ligands with remarkable sensitivity. Despite the excellent characterization of the chemotaxis signaling network, very little is known about what controls receptor complex size. Here we use in vitro signaling data to model the distribution of complex sizes. In particular, we model Tar receptors in membranes as an ensemble of different sized oligomer complexes, i.e., receptor dimers, dimers of dimers, and trimers of dimers, where the relative free energies, including receptor modification, ligand binding, and interaction with the kinase CheA determine the size distribution. Our model compares favorably with a variety of signaling data, including dose-response curves of receptor activity and the dependence of activity on receptor density in the membrane. We propose that the kinetics of complex assembly can be measured in vitro from the temporal response to a perturbation of the complex free energies, e.g., by addition of ligand
    corecore