28 research outputs found

    On-Chip Integrated, Silicon-Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain.

    Get PDF
    We report an on-chip integrated metal graphene-silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics.We acknowledge funding from EU Graphene Flagship (No. 604391), ERC Grant Hetero2D, and EPSRC Grant Nos. EP/ K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/ 1, and EP/L016087/1.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acs.nanolett.5b0521

    Two Chromogranin A-Derived Peptides Induce Calcium Entry in Human Neutrophils by Calmodulin-Regulated Calcium Independent Phospholipase A2

    Get PDF
    Background: Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings: PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaMbinding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance: For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems

    Similarity of Chlamydia pneumoniae strains in the variable domain IV region of the major outer membrane protein gene.

    No full text
    DNA was amplified by polymerase chain reaction from the gene encoding the major outer membrane protein (MOMP) of Chlamydia pneumoniae in order to examine the relatedness of strains isolated from diverse geographical regions. Primers for this reaction were chosen to span a 207-bp region comparable to that of the fourth variable segment of the MOMP gene of Chlamydia trachomatis. Among C. trachomatis, sequence heterogeneity is characteristic within variable sequence domain IV (VDIV) and correlates with serovar type. In contrast, sequence analysis of polymerase chain reaction products from 13 C. pneumoniae isolates indicated that all tested strains were identical in this segment of the MOMP gene. The predicted amino acid sequences from the C. pneumoniae VDIV gene products shared only 13.3 to 30% homology with published VDIV regions from serovars of C. trachomatis. Homology of these VDIV amino acid sequences with sequences from strains of C. psittaci ranged from 45.7 to 60%. The sequence conservation of the VDIV region of the MOMP gene indicates that C. pneumoniae strains may be more genetically homogeneous than C. trachomatis or Chlamydia psittaci strains. Future investigations of antigenic diversity among C. pneumoniae strains should be aimed at the evaluation of variation in other regions of the C. pneumoniae genome

    Local Induction of a Specific Th1 Immune Response by Allergen Linked Immunostimulatory DNA in the Nasal Explants of Ragweed- Allergic Subjects

    Get PDF
    Background: Allergen immunotherapy is effective in allergic individuals however efforts are being made to improve its safety, convenience, and efficacy. It has recently been demonstrated that allergen-linked immunostimulatory DNA (ISS) is effective in stimulating an allergen-specific Th1 response with decreased allergenicity. The objective of this study is to investigate whether ISS linked to purified ragweed allergen Amb-a-1 (AIC) can inhibit local allergen-specific Th2 and induce allergen-specific Th1 responses in explanted nasal mucosa of ragweed-sensitive subjects. In addition, we set out to determine whether AIC is more effective compared to stimulation with unlinked Amb a 1 and ISS. Methods: Tissue from ragweed-sensitive patients (n=12) was cultured with whole ragweed allergen (RW), Amb-a-1, AIC, Amb-a-1 and ISS (unlinked), or tetanus toxoid (TT) for 24 hours. IL-4, −5, −13, TNF-α and IFN-γ mRNA-positive cells were visualized by in situ hybridization and T cells, B cells and neutrophils were enumerated using immunocytochemistry. Results: RW or Amb-a-1 increased the number of IL-4, IL-5, and IL-13 mRNA+cells in the tissue compared to medium alone. AIC had similar cytokine mRNA reactivity as control tissue. AIC and TT increased IFNγ-mRNA expression. Unlinked Amb-a-1 and ISS showed similar effects to AIC, however this response was weaker. The number of TNF mRNA+ cells, T cells, B cells and neutrophils remained unchanged. Conclusions: AIC is effective in stimulating a local allergen-specific Th1- and abolishing Th2-cytokine mRNA reactivity in the nose and may be considered as a strong candidate for an improved approach to immunotherapy in ragweed-sensitive individuals

    From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine

    No full text
    Introduction: Given the characteristics of meningococcal carriage and transmission and the sudden, often severe onset and long-term consequences of disease, vaccination can most effectively provide large-scale control of invasive disease. Six serogroups (A, B, C, W, X, and Y) cause nearly all meningococcal disease globally. Capsular polysaccharide conjugate vaccines can prevent serogroups A, C, W, and Y disease. More recently, recombinant protein vaccines for preventing serogroup B meningococcal (MenB) disease have become available, with a major target of vaccine-induced immune response for both vaccines being bacterial factor H binding protein (FHbp). Importantly, FHbp segregates into only two distinct subfamilies (A [also classified as variants 2 and 3] and B [variant 1]). This review summarizes the complete clinical development program supporting licensure of MenB-FHbp (Trumenba®, Bivalent rLP2086), the only MenB vaccine containing antigens from both FHbp subfamilies. Areas covered: Eleven published clinical studies assessing MenB-FHbp efficacy and safety among 20,803 adolescents and adults are examined. Particular focus is on the methodology of immunogenicity assessments used as a surrogate for clinical efficacy. Expert commentary: Clinical studies in adolescents and adults consistently demonstrated MenB-FHbp safety and induction of immunologic responses against antigenically and epidemiologically diverse MenB isolates, supporting licensure and immunization recommendations

    Meningococcal serogroup B vaccines: Estimating breadth of coverage

    No full text
    Neisseria meningitidis serogroup B (MenB) is an important cause of invasive meningococcal disease. The development of safe and effective vaccines with activity across the diversity of MenB strains has been challenging. While capsular polysaccharide conjugate vaccines have been highly successful in the prevention of disease due to meningococcal serogroups A, C, W, and Y, this approach has not been possible for MenB owing to the poor immunogenicity of the MenB capsular polysaccharide. Vaccines based on outer membrane vesicles have been successful in the prevention of invasive MenB disease caused by the single epidemic strain from which they were derived, but they do not confer broad protection against diverse MenB strains. Thus, alternative approaches to vaccine development have been pursued to identify vaccine antigens that can provide broad protection against the epidemiologic and antigenic diversity of invasive MenB strains. Human factor H binding protein (fHBP) was found to be such an antigen, as it is expressed on nearly all invasive disease strains of MenB and can induce bactericidal responses against diverse MenB strains. A bivalent vaccine (Trumenba®, MenB-FHbp, bivalent rLP2086) composed of equal amounts of 2 fHBP variants from each of the 2 immunologically diverse subfamilies of fHBP (subfamilies A and B) was the first MenB vaccine licensed in the United States under an accelerated approval pathway for prevention of invasive MenB disease. Due to the relatively low incidence of meningococcal disease, demonstration of vaccine efficacy for the purposes of licensure of bivalent rLP2086 was based on vaccine-elicited bactericidal activity as a surrogate marker of efficacy, as measured in vitro by the serum bactericidal assay using human complement. Because bacterial surface proteins such as fHBP are antigenically variable, an important component for evaluation and licensure of bivalent rLP2086 included stringent criteria for assessment of breadth of coverage across antigenically diverse and epidemiologically important MenB strains. This review describes the rigorous approach used to assess broad coverage of bivalent rLP2086. Alternative nonfunctional assays proposed for assessing vaccine coverage are also discussed

    Safety and Immunogenicity of M2-Deficient, Single Replication, Live Influenza Vaccine (M2SR) in Adults

    No full text
    M2SR (M2-deficient single replication) is an investigational live intranasal vaccine that protects against multiple influenza A subtypes in influenza-naïve and previously infected ferrets. We conducted a phase 1, first-in-human, randomized, dose-escalation, placebo-controlled study of M2SR safety and immunogenicity. Adult subjects received a single intranasal administration with either placebo or one of three M2SR dose levels (106, 107 or 108 tissue culture infectious dose (TCID50)) expressing hemagglutinin and neuraminidase from A/Brisbane/10/2007 (H3N2) (24 subjects per group). Subjects were evaluated for virus replication, local and systemic reactions, adverse events (AE), and immune responses post-vaccination. Infectious virus was not detected in nasal swabs from vaccinated subjects. At least one AE (most commonly mild nasal rhinorrhea/congestion) was reported among 29%, 58%, and 83% of M2SR subjects administered a low, medium or high dose, respectively, and among 46% of placebo subjects. No subject had fever or a severe reaction to the vaccine. Influenza-specific serum and mucosal antibody responses and B- and T-cell responses were significantly more frequent among vaccinated subjects vs. placebo recipients. The M2SR vaccine was safe and well tolerated and generated dose-dependent durable serum antibody responses against diverse H3N2 influenza strains. M2SR demonstrated a multi-faceted immune response in seronegative and seropositive subjects

    Meningococcal Serogroup B Bivalent rLP2086 Vaccine Elicits Broad and Robust Serum Bactericidal Responses in Healthy Adolescents.

    No full text
    Neisseria meningitidis serogroup B (MnB) is a leading cause of invasive meningococcal disease in adolescents and young adults. A recombinant factor H binding protein (fHBP) vaccine (Trumenba(®); bivalent rLP2086) was recently approved in the United States in individuals aged 10-25 years. Immunogenicity and safety of 2- or 3-dose schedules of bivalent rLP2086 were assessed in adolescents
    corecore