38 research outputs found
Bevacizumab Demonstrates Prolonged Disease Stabilization in Patients with Heavily Pretreated Metastatic Renal Cell Carcinoma: A Case Series and Review of the Literature
There are now a variety of therapies approved for the treatment of metastatic renal cell carcinoma (RCC). These include the immunotherapeutics, alfa-interferon, and interleukin-2, and agents that target the vascular endothelial growth factor receptor (VEGFR) via its tyrosine kinase, such as sorafenib, sunitinib, and pazopanib, or the mammalian target of rapamycin (mTOR), such as temsirolimus and everolimus. Bevacizumab, a monoclonal antibody directed against the ligand, VEGF, has shown activity against RCC as a single agent in patients who had failed prior cytokine therapy and as first line therapy in combination with interferon. The activity of bevacizumab in patients who had received and failed prior therapy has not been described. We report our experience in 4 patients with metastatic RCC who had failed prior cytokine, TKI, and mTOR inhibitors who were treated with bevacizumab as single agent therapy. These heavily pretreated patients sustained very prolonged periods of stable disease (median of 12 months) with very little toxicity and excellent quality of life. The activity of this agent in patients who had failed prior therapies directed against the VEGFR and mTOR suggests that therapy targeting the ligand, VEGF, is still a viable approach in these patients and deserves further study
Toxicity in combination immune checkpoint inhibitor and radiation therapy: a systematic review and meta-analysis
BACKGROUND AND PURPOSE: Immune checkpoint inhibitor with radiation therapy (ICI + RT) is under investigation for improved patient outcome, so we performed a systematic review/meta-analysis of toxicities for ICI + RT compared to immune checkpoint inhibitor (ICI) therapy alone.
MATERIALS AND METHODS: A PRISMA-compliant systematic review of studies in MEDLINE (PubMed) and in the National Comprehensive Cancer Network guidelines was conducted, with primary outcome grade 3+ toxicity. Criteria for ICI alone were: phase III/IV trials that compared immunotherapy to placebo, chemotherapy, or alternative immunotherapy; and for ICI + RT: prospective/retrospective studies with an arm treated with ICI + RT. Meta-analysis was performed by random effects models using the DerSimonian and Laird method. The I(2) statistic and Cochran\u27s Q test were used to assess heterogeneity, while funnel plots and Egger\u27s test assessed publication bias.
RESULTS: This meta-analysis included 51 studies (n=15,398), with 35 ICI alone (n=13,956) and 16 ICI + RT studies (n=1,442). Our models showed comparable grade 3-4 toxicities in ICI + RT (17.8%; 95% CI, 12.0-24.5%) and ICI alone (22.3%; 95% CI, 18.1-26.9%). Stratification by timing of radiation and irradiated site showed no significant differences, but anti-CTLA4 therapy and melanoma showed increased toxicity. The grade 5 toxicities were 1.1% and 1.9% for ICI alone and ICI + RT respectively. There was significant heterogeneity, but not publication bias.
CONCLUSIONS: The random effects model showed comparable grade 3-4 toxicity in using ICI + RT compared to ICI alone in CNS melanoma metastases, NSCLC, and prostate cancer. ICI + RT is safe for future clinical trials in these cancers
Acoustic separation of circulating tumor cells
Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (~100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.National Institutes of Health (U.S.) (Grant 1 R01 GM112048-01A1)National Institutes of Health (U.S.) (Grant 1R33EB019785-01)National Science Foundation (U.S.)Penn State Center for Nanoscale Science (Materials Research Science and Engineering Center Grant DMR-0820404)National Institutes of Health (U.S.) (Grant U01HL114476
Chloroquine-Resistant Haplotype Plasmodium falciparum Parasites, Haiti
Chloroquine resistance is now present in this country
Effects of commercially available soy products on PSA in androgen-deprivation-naïve and castration-resistant prostate cancer.
OBJECTIVE: No standard therapeutic option exists for men with prostate cancer who have failed local therapy, have no gross metastatic disease, and whose only manifestation of disease is a rising prostate-specific antigen (PSA) level. Soy products are able to affect PSA kinetics in some men with prostate cancer, and this effect has been attributed to the decreased expression of the androgen receptor and other mechanisms.
METHODS: We treated 10 men with rising PSA levels after radical prostatectomy and salvage radiotherapy with commercially available soy products. Scans revealed no gross metastatic disease. Three men also had been receiving androgen-deprivation therapy (ADT) and had rising PSA levels that were consistent with castration-resistant (CR) disease. We reported the results of this modality on PSA levels, PSA kinetics, and the duration of PSA response.
RESULTS: Responses occurred in 4 of 7 (57%) patients with ADT-naïve disease and 1 of 3 (33%) patients with CR disease. The median duration of treatment response was 24 months. The overall clinical benefit, therefore, was noted in 5 of 10 (50%) patients. Therapy was well tolerated.
CONCLUSIONS: Our findings are fairly congruent with what has been described in the literature on the use of this modality in prostate cancer. We used commercially available soy products. We also show that soy can provide benefit in CR prostate cancer. Our clinical experience suggests that soy supplementation using commercially available soy products can have durable beneficial effects on PSA levels and PSA kinetics in some men with prostate cancer