506 research outputs found

    OCTAGONAL NUCLEAR PORES

    Get PDF
    Negative staining of isolated nuclear envelopes by phosphotungstate shows that the nuclear pores are octagonal rather than circular. Pores of the same shape and approximately the same width, 663 ± 5 A, were demonstrated in the newt, Triturus, the frog, Rana, and the starfish, Henricia. The outer and inner diameters of the annulus associated with each pore are respectively greater and less than the width of the pore itself. For this reason surface views of the envelope, unless negatively stained, fail to show the true dimensions of the pores

    The Nuclear Envelope after KMnO4 Fixation

    Get PDF

    Macronuclear Duplication in the Ciliated Protozoan Euplotes

    Get PDF
    The ribbon-like macronucleus of Euplotes eurystomus pinches in half amitotically at each cell division. Several hours before the actual division two lightly staining duplication bands (reorganization bands) appear at the ends of the nucleus and approach each other slowly, finally meeting near the middle. Distal to the bands, that is, in regions through which the bands have already passed, the concentration of DNA (Feulgen) and "histone" (alkaline fast green) is greater than in the central zone. These facts suggest the hypothesis that DNA-histone synthesis takes place in a sequential fashion starting at the tips of the nucleus and proceeding to the middle. That this hypothesis is correct is shown by autoradiographic and photometric observations. Tritium-labelled thymidine is incorporated only in a limited region immediately distal to the bands. The average amount of Feulgen dye bound by the nucleus rises as the duplication bands approach each other, and is double the presynthesis value by the time the bands meet. A similar rise in the alkaline fast green dye is seen in duplicating nuclei, although no completely post-synthesis values were obtained in this study. The quantitative data are consistent with the assumption that the macronucleus contains a number of DNA-histone "units," presumably chromosomes, each of which duplicates once and only once

    CENTRIOLE REPLICATION : A Study of Spermatogenesis in the Snail Viviparus

    Get PDF
    This paper describes the replication of centrioles during spermatogenesis in the Prosobranch snail, Viviparus malleatus Reeve. Sections for electron microscopy were cut from pieces of testis fixed in OsO4 and embedded in the polyester resin Vestopal W. Two kinds of spermatocytes are present. These give rise to typical uniflagellate sperm carrying the haploid number of 9 chromosomes, and atypical multiflagellate sperm with only one chromosome. Two centrioles are present in the youngest typical spermatocyte. Each is a hollow cylinder about 160 mµ in diameter and 330 mµ long. The wall consists of 9 sets of triplet fibers arranged in a characteristic pattern. Sometime before pachytene an immature centriole, or procentriole as it will be called, appears next to each of the mature centrioles. The procentriole resembles a mature centriole in most respects except length: it is more annular than tubular. The daughter procentriole lies with its axis perpendicular to that of its parent. It presumably grows to full size during the late prophase, although the maturation stages have not been observed with the electron microscope. It is suggested that centrioles possess a constant polarization. The distal end forms the flagellum or other centriole products, while the proximal end represents the procentriole and is concerned with replication. The four centrioles of prophase (two parents and two daughters) are distributed by the two meiotic divisions to the four typical spermatids, in which they function as the basal bodies of the flagella. Atypical spermatocytes at first contain two normal centrioles. Each of these becomes surrounded by a cluster of procentrioles, which progressively elongate during the late prophase. After two aberrant meiotic divisions the centriole clusters give rise to the basal bodies of the multiflagellate sperm. These facts are discussed in the light of the theory, first proposed by Pollister, that the supernumerary centrioles in the atypical cells are derived from the centromeres of degenerating chromosomes

    SMALL GRANULES IN THE AMPHIBIAN OOCYTE NUCLEUS AND THEIR RELATIONSHIP TO RNA

    Get PDF
    Small particles (100 to 300 A in diameter) are seen in sections of nucleoli, the loops of the amphibian lampbrush chromosomes, and the Balbiani-ring regions of dipteran salivary-gland chromosomes. All of these structures contain cytochemically demonstrable RNA. Furthermore, the annuli seen on the nuclear envelope are composed of small particles which are similar to or identical with those commonly associated with the endoplasmic reticulum. It seems likely that ribonucleoproteins are organized as small particulates in the nucleus as well as in the cytoplasm

    CENTRIOLE REPLICATION : II. Sperm Formation in the Fern, Marsilea, and the Cycad, Zamia

    Get PDF
    Sperm formation was studied in the fern, Marsilea, and the cycad, Zamia, with particular emphasis on the centrioles. In Marsilea, the mature sperm possesses over 100 flagella, the basal bodies of which have the typical cylindrical structure of centrioles. Earlier observations by light microscopy suggested that these centrioles arise by fragmentation of a body known as the blepharoplast. In the youngest spermatids the blepharoplast is a hollow sphere approximately 0.8 µ in diameter. Its wall consists of closely packed immature centrioles, or procentrioles. The procentrioles are short cylinders which progressively lengthen during differentiation of the spermatid. At the same time they migrate to the surface of the cell, where each of them puts out a flagellum. A blepharoplast is found at each pole of the spindle during the last antheridial mitosis, and two blepharoplasts are found in the cytoplasm before this mitosis. Blepharoplasts are also found in the preceding cell generation, but their ultimate origin is obscure. Before the last mitosis the blepharoplasts are solid, consisting of a cluster of radially arranged tubules which bear some structural similarity to centrioles. In Zamia, similar stages are found during sperm formation, although here the number of flagella on each sperm is close to 20,000 and the blepharoplast measures about 10 µ in diameter. These observations are discussed in relation to theories of centriole replication

    THE TIMING OF MEIOSIS AND DNA SYNTHESIS DURING EARLY OOGENESIS IN THE TOAD, XENOPUS LAEVIS

    Get PDF
    Recently metamorphosed female Xenopus laevis toads were injected with tritiated thymidine. Animals were kept at 20°C and were sacrificed 1–23 days after isotope injection. Radio-autographs of squash preparations of the ovaries were made. The progress of labeled germ cell nuclei was followed to obtain information on the time course of early meiosis and extra-chromosomal DNA synthesis. Premeiotic S was estimated to take not more than 7 days. Leptotene takes 4 days, zygotene takes 5 days, and pachytene was estimated to be completed in about 18 days. The major period of amplification of the extrachromosomal DNA occurs in pachytene and takes about 13 days. A low level of synthesis was observed before and after this period, in zygotene and late pachytene-early diplotene, extending the total time for extrachromosomal DNA synthesis during meiosis to about 18 days. These data allowed the calculation to be made that one round of replication of the amplified DNA takes between 1.2 and 3.0 days. It was also found that in both oogonial and premeiotic interphases, the nucleolus-associated DNA shows asynchronous (probably late) labeling with respect to the chromosomes

    CHROMOSOMAL LOCALIZATION OF REPETITIVE DNA IN THE NEWT, TRITURUS

    Get PDF
    The repetitive DNA sequences of the newt, Triturus viridescens, have been studied by nucleic acid hybridization procedures. Complementary RNA was synthesized enzymatically from unfractionated newt DNA. This RNA hybridized strongly to the centromeric regions of both somatic and lampbrush chromosomes It also bound to other loci scattered along the lengths of the chromosomes The amplified ribosomal DNA in the multiple oocyte nucleoli was demonstrated by in situ hybridizatio

    Is there "Metabolic" DNA in the Mouse Seminal Vesicle?

    Get PDF
    This study was designed to answer the question: Is H3-thymidine uptake by nuclei of the mouse seminal vesicle evidence for DNA synthesis and mitosis, or does it signify some "metabolic" function of DNA unrelated to chromosome duplication? Mice were given an intraperitoneal injection of H3-thymidine. Six hours later Feulgen squashes of the seminal vesicle epithelium were made and covered with autoradiographic stripping film. The silver grains above labeled nuclei were counted, and the Feulgen dye contents of these same nuclei were determined photometrically after removal of the grains from the emulsion. Unlabeled nuclei were also measured. The dye contents of non-radioactive nuclei form a unimodal distribution, indicating that polyploidy is absent from this tissue. The radioactive nuclei fall into two groups. In the first, the average dye content is the same as that of the cold nuclei (2C). In the second, the values range from 2C to 4C. In the 2C to 4C group the grain count is proportional to the dye content, showing that incorporation is correlated with synthesis. The radioactive 2C nuclei arose by mitosis during the course of the experiment. This is shown by the following facts: (1) They frequently occur in pairs. (2) They average smaller than unlabeled 2C nuclei. (3) Their average grain count is approximately half that of the 4C nuclei. (4) Labeled division figures are found. (5) A mitotic rate estimated from the number of labeled 2C nuclei accords reasonably well with one based on the number of observed mitoses. Since the incorporation of thymidine accompanies DNA synthesis and precedes mitosis, there is no reason to postulate a special "metabolic" DNA in this tissue

    The Spermatid Nucleus in Two Species of Grasshopper

    Get PDF
    The nuclear changes accompanying spermatid elongation have been studied in two species of grasshopper, Dissosteira carolina and Melanoplus femur-rubrum. Testes were fixed in 1 per cent buffered OsO4, imbedded in butyl methacrylate, and examined as thin sections in the electron microscope. In both species nuclear changes during spermatid development involve (1) an early period, during which the nuclear contents are predominately fibrous; (2) a middle period, characterized by the lateral association of the nuclear fibers to form plates or lamellae which are oriented longitudinally in the major axis of the elongated nucleus; and (3) a late period, involving coalescence of the lamellae into a crystalline body which eventually becomes so dense that all resolvable detail is lost. The fibers seen in the early spermatid nucleus are about 150 A in diameter and so are similar to fibers described from other types of nuclei. The thickness of the lamellae varies from about 150 A when first formed to 70 A during the later stages. The lack of evident chromosomal boundaries in the spermatid nucleus makes it difficult to relate either the fibers or lamellae to more familiar aspects of chromosome structure. We see no apparent reason to consider that the fiber alignment described here is related to conventional chromosome pairing
    • …
    corecore