38 research outputs found

    Chronic venous disease - Part II: Proteolytic biomarkers in wound healing

    Get PDF
    open5sìVenous leg ulcers (VLU) are characterized by sustained proteolytic microenvironment impairing the healing process. Wound fluid (WF) reflect the biomolecular activities occurring within the wound area; however, it is unclear if WF from different healing phases have different proteolytic profiles and how VLU microenvironment affects the wound healing mechanisms. We investigated the proteolytic network of WF from distinct VLU phases, and in WF- and LPS-stimulated THP-1 monocytes treated with glycosaminoglycan sulodexide, a well known therapeutic approach for VLU healing. WF were collected from patients with VLU during inflammatory (Infl) and granulating (Gran) phases. WF and THP-1 supernatants were analyzed for nine matrix metalloproteinases (MMP) and four tissue inhibitors of metalloproteinases (TIMP) by multiplex immunoassays. Our results demonstrated that: 1) WF from Infl VLU contained significantly increased concentrations of MMP-2, MMP-9, MMP-12, TIMP-1, and TIMP-2 compared to Gran WF; 2) WF from Gran VLU showed significantly increased levels of MMP-1, MMP-7, MMP-13, and TIMP-4 compared to Infl WF; 3) LPS- and WF-stimulation of THP-1 cells significantly increased the expression of several MMP compared to untreated cells; 4) Sulodexide treatment of both LPS- and WF-stimulated THP-1 significantly down-regulated the release of several MMPs. Our study provides evidence-based medicine during treatment of patients with VLU. WF from Infl and Gran VLU have different MMP and TIMP signatures, consistent with their clinical state. The modulation of proteolytic pathways in wound microenvironment by glycosaminoglycan sulodexide, provide insights for translating research into clinical practice during VLU therapy.openLigi, Daniela; Mosti, Giovanni; Croce, Lidia; Raffetto, Joseph D; Mannello, FerdinandoLigi, Daniela; Mosti, Giovanni; Croce, Lidia; Raffetto, Joseph D; Mannello, Ferdinand

    Synopsis on cellular senescence and apoptosis

    Get PDF

    Incision and abdominal wall hernias in patients with aneurysm or occlusive aortic disease

    Get PDF
    AbstractIntroductionPatients undergoing midline incision for abdominal aortic reconstruction appear to be at greater risk for postoperative incision hernia compared with patients undergoing celiotomy for general surgical procedures. Controversy exists as to whether incidence of abdominal wall hernia and increased risk for incision hernia is higher in patients with abdominal aortic aneurysm (AAA) than in patients operated on because of aortoiliac occlusive disease (AOD). We conducted a prospective multi-institutional study to assess frequency of incision hernia after aortic surgery through a midline laparotomy and of previous abdominal wall hernia.MethodsPatients with AAA (n = 177) or AOD (n = 82) from three major institutions were prospectively enrolled in the study and examined. Data collected included demographic data, cardiopulmonary risk factors, smoking status, history of previous or current abdominal wall hernia (incision, inguinal, umbilical, femoral), previous midline incision, suture type, and postoperative complications. At a minimum of 6 months after laparotomy, patients were evaluated clinically for a new incision hernia. Differences were tested with the unpaired t test, X2 test, or Fisher exact test, and multiple logistic regression was used to control for confounding variables.ResultsMean follow-up of the cohort was 32.8 ± 2.3 months. Rate of abdominal wall hernia and inguinal hernia in patients with AAA versus AOD was 38.4% versus 11% (P = .001) and 23.7% versus 6.1% (P = .003), respectively. Rate of postoperative incision hernia in patients with AAA was 28.2%, and in patients with AOD was 11.0% (P = .002). Adjusting for age, smoking, chronic obstructive pulmonary disease, body mass index, diabetes, bowel obstruction, and suture type, patients with AAA had almost a ninefold risk for postoperative incision hernia formation (odds ratio [OR], 8.8; P = .0049).ConclusionCompared with patients with AOD, patients with AAA have a higher frequency of abdominal wall hernia and inguinal hernia, and are at significant increased risk for development of incision hernia postoperatively. The higher frequency of hernia formation in patients with AAA suggests the presence of a structural defect within the fascia. Further studies are needed to delineate the molecular changes of the aorta and its relation to the abdominal wall fascia

    The care of patients with varicose veins and associated chronic venous diseases: Clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum

    Get PDF
    The Society for Vascular Surgery (SVS) and the American Venous Forum (AVF) have developed clinical practice guidelines for the care of patients with varicose veins of the lower limbs and pelvis. The document also includes recommendations on the management of superficial and perforating vein incompetence in patients with associated, more advanced chronic venous diseases (CVDs), including edema, skin changes, or venous ulcers. Recommendations of the Venous Guideline Committee are based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system as strong (GRADE 1) if the benefits clearly outweigh the risks, burden, and costs. The suggestions are weak (GRADE 2) if the benefits are closely balanced with risks and burden. The level of available evidence to support the evaluation or treatment can be of high (A), medium (B), or low or very low (C) quality. The key recommendations of these guidelines are: We recommend that in patients with varicose veins or more severe CVD, a complete history and detailed physical examination are complemented by duplex ultrasound scanning of the deep and superficial veins (GRADE 1A). We recommend that the CEAP classification is used for patients with CVD (GRADE 1A) and that the revised Venous Clinical Severity Score is used to assess treatment outcome (GRADE 1B). We suggest compression therapy for patients with symptomatic varicose veins (GRADE 2C) but recommend against compression therapy as the primary treatment if the patient is a candidate for saphenous vein ablation (GRADE 1B). We recommend compression therapy as the primary treatment to aid healing of venous ulceration (GRADE 1B). To decrease the recurrence of venous ulcers, we recommend ablation of the incompetent superficial veins in addition to compression therapy (GRADE 1A). For treatment of the incompetent great saphenous vein (GSV), we recommend endovenous thermal ablation (radiofrequency or laser) rather than high ligation and inversion stripping of the saphenous vein to the level of the knee (GRADE 1B). We recommend phlebectomy or sclerotherapy to treat varicose tributaries (GRADE 1B) and suggest foam sclerotherapy as an option for the treatment of the incompetent saphenous vein (GRADE 2C). We recommend against selective treatment of perforating vein incompetence in patients with simple varicose veins (CEAP class C2; GRADE 1B), but we suggest treatment of pathologic perforating veins (outward flow duration ≥500 ms, vein diameter ≥3.5 mm) located underneath healed or active ulcers (CEAP class C5-C6; GRADE 2B). We suggest treatment of pelvic congestion syndrome and pelvic varices with coil embolization, plugs, or transcatheter sclerotherapy, used alone or together (GRADE 2B)

    Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment

    No full text
    Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension. Several demographic, genetic, and environmental factors could trigger chronic venous disease with venous dilation, incompetent valves, venous reflux, and venous hypertension. Endothelial cell injury and changes in the glycocalyx, venous shear-stress, and adhesion molecules could be initiating events in VLU. Increased endothelial cell permeability and leukocyte infiltration, and increases in inflammatory cytokines, matrix metalloproteinases (MMPs), reactive oxygen and nitrogen species, iron deposition, and tissue metabolites also contribute to the pathogenesis of VLU. Treatment of VLU includes compression therapy and endovenous ablation to occlude the axial reflux. Other interventional approaches such as subfascial endoscopic perforator surgery and iliac venous stent have shown mixed results. With good wound care and compression therapy, VLU usually heals within 6 months. VLU healing involves orchestrated processes including hemostasis, inflammation, proliferation, and remodeling and the contribution of different cells including leukocytes, platelets, fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes as well as the release of various biomolecules including transforming growth factor-β, cytokines, chemokines, MMPs, tissue inhibitors of MMPs (TIMPs), elastase, urokinase plasminogen activator, fibrin, collagen, and albumin. Alterations in any of these physiological wound closure processes could delay VLU healing. Also, these histological and soluble biomarkers can be used for VLU diagnosis and assessment of its progression, responsiveness to healing, and prognosis. If not treated adequately, VLU could progress to non-healed or granulating VLU, causing physical immobility, reduced quality of life, cellulitis, severe infections, osteomyelitis, and neoplastic transformation. Recalcitrant VLU shows prolonged healing time with advanced age, obesity, nutritional deficiencies, colder temperature, preexisting venous disease, deep venous thrombosis, and larger wound area. VLU also has a high, 50–70% recurrence rate, likely due to noncompliance with compression therapy, failure of surgical procedures, incorrect ulcer diagnosis, progression of venous disease, and poorly understood pathophysiology. Understanding the molecular pathways underlying VLU has led to new lines of therapy with significant promise including biologics such as bilayer living skin construct, fibroblast derivatives, and extracellular matrices and non-biologic products such as poly-N-acetyl glucosamine, human placental membranes amnion/chorion allografts, ACT1 peptide inhibitor of connexin 43, sulodexide, growth factors, silver dressings, MMP inhibitors, and modulators of reactive oxygen and nitrogen species, the immune response and tissue metabolites. Preventive measures including compression therapy and venotonics could also reduce the risk of progression to chronic venous insufficiency and VLU in susceptible individuals

    Pulmonary embolism. Epidemiology, diagnosis and treatment

    No full text

    Matrix metalloproteinase activity and glycosaminoglycans in chronic venous disease: the linkage among cell biology, pathology and translational research

    No full text
    Primary chronic venous disease (CVD) is an inflammatory pathology involving an erratic structural remodeling in the venous well leading to vascular incompetence and the development of varicose vein, characterized by altered collagen and elastin content. In the early steps of varicose vein formation is crucial the role of MMP/TIMP balance, implicated in both ECM and vascular degradation during inflammation processes in early and late stages of venous diseases. Although several pharmacological and surgical strategies are being utilized in the management of varicose vein and CVD with variable success and recurrence rate, inhibition of MMP through glycosaminoglycans may represent a novel therapeutic intervention to limit the progression of varicose vein to CVD and leg ulceration, suggesting possible opportunity to prevent future morbidity and enhancing clinical benefits and quality of life

    Mechanisms of lower extremity vein dysfunction in chronic venous disease and implications in management of varicose veins

    No full text
    Chronic venous disease (CVD) is a common venous disorder of the lower extremities. CVD can be manifested as varicose veins (VVs), with dilated and tortuous veins, dysfunctional valves and venous reflux. If not adequately treated, VVs could progress to chronic venous insufficiency (CVI) and lead to venous leg ulcer (VLU). Predisposing familial and genetic factors have been implicated in CVD. Additional environmental, behavioral and dietary factors including sedentary lifestyle and obesity may also contribute to CVD. Alterations in the mRNA expression, protein levels and proteolytic activity of matrix metalloproteinases (MMPs) have been detected in VVs and VLU. MMP expression/activity can be modulated by venous hydrostatic pressure, hypoxia, tissue metabolites, and inflammation. MMPs in turn increase proteolysis of different protein substrates in the extracellular matrix particularly collagen and elastin, leading to weakening of the vein wall. MMPs could also promote venous dilation by increasing the release of endothelium-derived vasodilators and activating potassium channels, leading to smooth muscle hyperpolarization and relaxation. Depending on VVs severity, management usually includes compression stockings, sclerotherapy and surgical removal. Venotonics have also been promoted to decrease the progression of VVs. Sulodexide has also shown benefits in VLU and CVI, and recent data suggest that it could improve venous smooth muscle contraction. Other lines of treatment including induction of endogenous tissue inhibitors of metalloproteinases and administration of exogenous synthetic inhibitors of MMPs are being explored, and could provide alternative strategies in the treatment of CVD
    corecore