18 research outputs found

    Junín Virus Infection of Human Hematopoietic Progenitors Impairs In Vitro Proplatelet Formation and Platelet Release via a Bystander Effect Involving Type I IFN Signaling

    Get PDF
    Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV), a member of the arenaviridae family. Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection. Like in other viral hemorrhagic fevers (VHF), AHF patients present with fever and hemorrhagic complications. Although the causes of the bleeding are poorly understood, impaired hemostasis, endothelial cell dysfunction and low platelet counts have been described. Thrombocytopenia is a common feature in VHF syndromes, and it is a major sign for its diagnosis. However, the underlying pathogenic mechanism has not yet been elucidated. We hypothesized that thrombocytopenia results from a viral-triggered alteration of the megakaryo/thrombopoiesis process. Therefore, we evaluated the impact of JUNV on megakaryopoiesis using an in vitro model of human CD34+ cells stimulated with thrombopoietin. Our results showed that CD34+ cells are infected with JUNV in a restricted fashion. Infection was transferrin receptor 1 (TfR1)-dependent and the surface expression of TfR1 was higher in infected cultures, suggesting a novel arenaviral dissemination strategy in hematopoietic progenitor cells. Although proliferation, survival, and commitment in JUNV-infected cultures were normal, viral infection impaired thrombopoiesis by decreasing in vitro proplatelet formation, platelet release, and P-selectin externalization via a bystander effect. The decrease in platelet release was also TfR1-dependent, mimicked by poly(I:C), and type I interferon (IFN α/β) was implicated as a key paracrine mediator. Among the relevant molecules studied, only the transcription factor NF-E2 showed a moderate decrease in expression in megakaryocytes from either infected cultures or after type I IFN treatment. Moreover, type I IFN-treated megakaryocytes presented ultrastructural abnormalities resembling the reported thrombocytopenic NF-E2−/− mouse phenotype. Our study introduces a potential mechanism for thrombocytopenia in VHF and other diseases associated with increased bone marrow type I IFN levels

    101

    No full text

    Near Eradication of Clinically Relevant Concentrations of Human Tumor Cells by Interferon-Activated Monocytes In Vitro

    No full text
    We have previously reported that low concentrations of interferon (IFN)-activated monocytes exert near-eradicative cytocidal activity against low concentrations of several human tumor cells in vitro. In the present study, we examined 7 human tumor cell lines and 3 diploid lines in the presence or absence of 10 ng/mL IFNα2a and monocytes. The results confirmed strong cytocidal activity against 4 of 7 tumor lines but none against 3 diploid lines. To model larger in vivo tumors, we increased the target cell concentration and determined the concentration of IFNα2a and monocytes, required for cell death. We found that increasing the tumor cell concentration from 10- to 100-fold (105 cells/well) required an increase in the concentration of IFNs by over 100-fold and monocytes by 10-fold. High concentrations of monocytes could sometimes kill tumor or diploid cells in the absence of IFN. We may conclude that killing of high concentrations of tumor or diploid cells required high concentrations of monocytes that could sometimes kill in the absence of IFN. Thus, high concentrations of tumor cells required high concentrations of IFN and monocytes to cause near eradication of tumor cells. These findings may have clinical implications
    corecore