3,091 research outputs found
A superconducting microwave multivibrator produced by coherent feedback
We investigate a coherent nonlinear feedback circuit constructed from
pre-existing superconducting microwave devices. The network exhibits emergent
bistable and astable states, and we demonstrate its operation as a latch and
the frequency locking of its oscillations. While the network is tedious to
model by hand, our observations agree quite well with the semiclassical
dynamical model produced by a new software package [N. Tezak et al.,
arXiv:1111.3081v1] that systematically interpreted an idealized schematic of
the system as a quantum optic feedback network.Comment: 9 double-spaced pages, 5 figures and supplement. To appear in Phys.
Rev. Let
All-optical switching of photonic entanglement
Future quantum optical networks will require the ability to route entangled
photons at high speeds, with minimal loss and added in-band noise, and---most
importantly---without disturbing the photons' quantum state. Here we present an
all-optical switch which fulfills these requirements and characterize its
performance at the single photon level. It exhibits a 200-ps switching window,
120:1 contrast, 1.5-dB loss, and induces no measurable degradation in the
switched photons' entangled-state fidelity (< 0.002). As a proof-of-principle
demonstration of its capability, we use the switch to demultiplex a single
quantum channel from a dual-channel, time-division-multiplexed entangled photon
stream. Furthermore, because this type of switch couples the temporal and
spatial degrees of freedom, it provides an important new tool with which to
encode multiple-qubit quantum states on a single photon
The Genetic Signature of Perineuronal Oligodendrocytes
Oligodendrocytes in the central nervous system can be categorized as precursors, myelin-forming, and non-myelinating perineuronal cells. The function of perineuronal oligodendrocytes is unknown; it was proposed that following injury, they may remyelinate denuded axons. We investigated these cells' potential. A combination of cell-specific tags, microarray technology and bioinformatics tools to identify gene expression differences between these subpopulations allowed us to capture the genetic signature of perineuronal oligodendrocytes. Here we report that perineuronal oligodendrocytes are configured for a dual role. As cells that embrace neuronal somata, they integrate a repertoire of transcripts designed to create their own code for communicating with neurons. But they maintain a reservoir of untranslated transcripts encoding the major myelin proteins for - we speculate - a demyelinating episode. We posit that the signature molecules, PDGFR-[alpha][beta] cytokine PDGF-CC, and transcription factor Pea3, used - among others - to define the non-myelinating phenotype, may be critical for mounting a myelinating programme during demyelination. Harnessing this capability is of therapeutic value for diseases such as multiple sclerosis. This is the first molecular characterization of an elusive neural cell
Convergence Conditions for Random Quantum Circuits
Efficient methods for generating pseudo-randomly distributed unitary
operators are needed for the practical application of Haar distributed random
operators in quantum communication and noise estimation protocols. We develop a
theoretical framework for analyzing pseudo-random ensembles generated through a
random circuit composition. We prove that the measure over random circuits
converges exponentially (with increasing circuit length) to the uniform (Haar)
measure on the unitary group and describe how the rate of convergence may be
calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title
changed; v3: published version, minor changes, references update
Efficient Quantum Polar Coding
Polar coding, introduced 2008 by Arikan, is the first (very) efficiently
encodable and decodable coding scheme whose information transmission rate
provably achieves the Shannon bound for classical discrete memoryless channels
in the asymptotic limit of large block sizes. Here we study the use of polar
codes for the transmission of quantum information. Focusing on the case of
qubit Pauli channels and qubit erasure channels, we use classical polar codes
to construct a coding scheme which, using some pre-shared entanglement,
asymptotically achieves a net transmission rate equal to the coherent
information using efficient encoding and decoding operations and code
construction. Furthermore, for channels with sufficiently low noise level, we
demonstrate that the rate of preshared entanglement required is zero.Comment: v1: 15 pages, 4 figures. v2: 5+3 pages, 3 figures; argumentation
simplified and improve
Multidimensional reconciliation for continuous-variable quantum key distribution
We propose a method for extracting an errorless secret key in a
continuous-variable quantum key distribution protocol, which is based on
Gaussian modulation of coherent states and homodyne detection. The crucial
feature is an eight-dimensional reconciliation method, based on the algebraic
properties of octonions. Since the protocol does not use any postselection, it
can be proven secure against arbitrary collective attacks, by using
well-established theorems on the optimality of Gaussian attacks. By using this
new coding scheme with an appropriate signal to noise ratio, the distance for
secure continuous-variable quantum key distribution can be significantly
extended.Comment: 8 pages, 3 figure
Information-theoretic equilibration: the appearance of irreversibility under complex quantum dynamics
The question of how irreversibility can emerge as a generic phenomena when
the underlying mechanical theory is reversible has been a long-standing
fundamental problem for both classical and quantum mechanics. We describe a
mechanism for the appearance of irreversibility that applies to coherent,
isolated systems in a pure quantum state. This equilibration mechanism requires
only an assumption of sufficiently complex internal dynamics and natural
information-theoretic constraints arising from the infeasibility of collecting
an astronomical amount of measurement data. Remarkably, we are able to prove
that irreversibility can be understood as typical without assuming decoherence
or restricting to coarse-grained observables, and hence occurs under distinct
conditions and time-scales than those implied by the usual decoherence point of
view. We illustrate the effect numerically in several model systems and prove
that the effect is typical under the standard random-matrix conjecture for
complex quantum systems.Comment: 15 pages, 7 figures. Discussion has been clarified and additional
numerical evidence for information theoretic equilibration is provided for a
variant of the Heisenberg model as well as one and two-dimensional random
local Hamiltonian
Noisy Preprocessing and the Distillation of Private States
We provide a simple security proof for prepare & measure quantum key
distribution protocols employing noisy processing and one-way postprocessing of
the key. This is achieved by showing that the security of such a protocol is
equivalent to that of an associated key distribution protocol in which, instead
of the usual maximally-entangled states, a more general {\em private state} is
distilled. Besides a more general target state, the usual entanglement
distillation tools are employed (in particular, Calderbank-Shor-Steane
(CSS)-like codes), with the crucial difference that noisy processing allows
some phase errors to be left uncorrected without compromising the privacy of
the key.Comment: 4 pages, to appear in Physical Review Letters. Extensively rewritten,
with a more detailed discussion of coherent --> iid reductio
Intraosseous Synovial Sarcoma of the Proximal Tibia
Synovial Sarcoma is a malignant mesenchymal tumor that comprises 5–10% of all soft tissue sarcomas. The mean age of onset is thirty years old. Intraosseous presentation is very rare and has only been documented a few times. We report herein a case of a 53-year-old man with synovial sarcoma arising in the left proximal tibia. The patient underwent a wide surgical resection and reconstruction, followed by adjuvant chemotherapy. Three years later, the patient developed a local recurrence that resulted in an above-the-knee amputation. Eight months later, the patient has completed chemotherapy and is without signs of recurrence. The current recommended treatment for synovial sarcoma is wide surgical resection followed by chemotherapy as well as long-term followup. Despite improved surgical techniques, long-term survival rates remain low
On the Receiving End: Discrimination Toward the Non-Religious in the United States [post-print]
The present study examines perceived discrimination faced by religious ‘nones’. After distinguishing between atheists, agnostics, and ‘nones’ who are deists or theists, we use nationally representative data from the 2008 American Religious Identification Survey (ARIS) to study the contexts in which these various types of religious ‘nones’ have reported experiencing discrimination. The strongest predictor of such discrimination was not theological atheism or agnosticism but self-identifying as an atheist or agnostic when asked what one\u27s religion is. Context-specific predictors of discrimination are age, region of the country, rural versus urban location, parents’ religious identifications, educational attainment, ethnicity and race. Results are consistent with the view that people who hold more pronounced views are more likely to report discrimination
- …