7 research outputs found

    Micromechanical resonator driven by radiation pressure force

    Get PDF
    Radiation pressure exerted by light on any surface is the pressure generated by the momentum of impinging photons. The associated force - fundamentally, a quantum mechanical aspect of light - is usually too small to be useful, except in large-scale problems in astronomy and astrodynamics. In atomic and molecular optics, radiation pressure can be used to trap or cool atoms and ions. Use of radiation pressure on larger objects such as micromechanical resonators has been so far limited to its coupling to an acoustic mode, sideband cooling, or levitation of microscopic objects. In this Letter, we demonstrate direct actuation of a radio-frequency micromechanical plate-type resonator by the radiation pressure force generated by a standard laser diode at room temperature. Using two independent methods, the magnitude of the resonator's response to forcing by radiation pressure is found to be proportional to the intensity of the incident light.https://www.nature.com/articles/s41598-017-16063-4.epdfPublished versio

    Measurement of nonlinear piezoelectric coefficients using a micromechanical resonator

    Full text link
    We describe and demonstrate a method by which the nonlinear piezoelectric properties of a piezoelectric material may be measured by detecting the force that it applies on a suspended micromechanical resonator at one of its mechanical resonance frequencies. Resonators are used in countless applications; this method could provide a means for better-characterizing material behaviors within real MEMS devices. Further, special devices can be designed to probe this nonlinear behavior at specific frequencies with enhanced signal sizes. The resonators used for this experiment are actuated using a 1-μm-thick layer of aluminum nitride. When driven at large amplitudes, the piezoelectric layer generates harmonics, which are measurable in the response of the resonator. In this experiment, we measured the second-order piezoelectric coefficient of aluminum nitride to be −(23.1±14.1)×10^−22m/V^2.Published versio

    Optical Wireless Information Transfer with Nonlinear Micromechanical Resonators

    Get PDF
    Wireless transfer of information is the basis of modern communication. It includes cellular, WiFi, Bluetooth and GPS systems, all of which use electromagnetic radio waves with frequencies ranging from typically 100 MHz to a few GHz. However, several long-standing challenges with standard radio-wave wireless transmission still exist, including keeping secure transmission of data from potential compromise. Here, we demonstrate wireless information transfer using a line-of-sight optical architecture with a micromechanical element. In this fundamentally new approach, a laser beam encoded with information impinges on a nonlinear micromechanical resonator located a distance from the laser. The force generated by the radiation pressure of the laser light on the nonlinear micromechanical resonator produces a sideband modulation signal, which carries the precise information encoded in the subtle changes in the radiation pressure. Using this, we demonstrate data and image transfer with one hundred percent fidelity with a single 96 micron by 270 micron silicon resonator element in an optical frequency band. This mechanical approach relies only on the momentum of the incident photons and is therefore able to use any portion of the optical frequency banda band that is 10,000 times wider than the radio frequency band. Our line-of-sight architecture using highly scalable micromechanical resonators offers new possibilities in wireless communication. Due to their small size, these resonators can be easily arrayed while maintaining a small form factor to provide redundancy and parallelism.Comment: 6 pages, 4 figure

    Measurement of nonlinear piezoelectric coefficients using a micromechanical resonator

    Full text link
    We describe and demonstrate a method by which the nonlinear piezoelectric properties of a piezoelectric material may be measured by detecting the force that it applies on a suspended micromechanical resonator at one of its mechanical resonance frequencies. Resonators are used in countless applications; this method could provide a means for better-characterizing material behaviors within real MEMS devices. Further, special devices can be designed to probe this nonlinear behavior at specific frequencies with enhanced signal sizes. The resonators used for this experiment are actuated using a 1-μ\mum-thick layer of aluminum nitride. When driven at large amplitudes, the piezoelectric layer generates harmonics, which are measurable in the response of the resonator. In this experiment, we measured the second-order piezoelectric coefficient of aluminum nitride to be −(23.1±14.1)×10−22 m/V2-(23.1\pm14.1)\times10^{-22}\ \mathrm{m/V^2}.Comment: 5 pages, 3 figures, preprin

    Nanomechanical detection of the spin Hall effect

    Full text link
    The spin Hall effect creates a spin current in response to a charge current in a material that has strong spin-orbit coupling. The size of the spin Hall effect in many materials is disputed, requiring independent measurements of the effect. We develop a novel mechanical method to measure the size of the spin Hall effect, relying on the equivalence between spin and angular momentum. The spin current carries angular momentum, so the flow of angular momentum will result in a mechanical torque on the material. We determine the size and geometry of this torque and demonstrate that it can be measured using a nanomechanical device. Our results show that measurement of the spin Hall effect in this manner is possible and also opens possibilities for actuating nanomechanical systems with spin currents.Comment: 5 pages + 2 pages supplementary material, 4 figures tota

    Micromechanical microphone using sideband modulation of nonlinear resonators

    Full text link
    We report the successful detection of an audio signal via sideband modulation of a nonlinear piezoelectric micromechanical resonator. The 270×\times96-μ\mum resonator was shown to be reliable in audio detection for sound intensity levels as low as ambient room noise and to have an unamplified sensitivity of 23.9 μ\muV/Pa. Such an approach may be adapted in acoustic sensors and microphones for consumer electronics or medical equipment such as hearing aids.Comment: 5 pages, 3 figure
    corecore