340 research outputs found
Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups
We study the symmetries of generalized spacetimes and corresponding phase
spaces defined by Jordan algebras of degree three. The generic Jordan family of
formally real Jordan algebras of degree three describe extensions of the
Minkowskian spacetimes by an extra "dilatonic" coordinate, whose rotation,
Lorentz and conformal groups are SO(d-1), SO(d-1,1) XSO(1,1) and
SO(d,2)XSO(2,1), respectively. The generalized spacetimes described by simple
Jordan algebras of degree three correspond to extensions of Minkowskian
spacetimes in the critical dimensions (d=3,4,6,10) by a dilatonic and extra
(2,4,8,16) commuting spinorial coordinates, respectively. The Freudenthal
triple systems defined over these Jordan algebras describe conformally
covariant phase spaces. Following hep-th/0008063, we give a unified geometric
realization of the quasiconformal groups that act on their conformal phase
spaces extended by an extra "cocycle" coordinate. For the generic Jordan family
the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are
given. The minimal unitary representations of the quasiconformal groups F_4(4),
E_6(2), E_7(-5) and E_8(-24) of the simple Jordan family were given in our
earlier work hep-th/0409272.Comment: A typo in equation (37) corrected and missing titles of some
references added. Version to be published in JHEP. 38 pages, latex fil
Theory of Luminescent Emission in Nanocrystal ZnS:Mn with an Extra Electron
We consider the effect of an extra electron injected into a doped quantum dot
. The Coulomb interaction and the exchange interaction between the
extra electron and the states of the Mn ion will mix the wavefunctions, split
the impurity energy levels, break the previous selection rules and change the
transition probabilities. Using this model of an extra electron in the doped
quantum dot, we calculated the energy and the wavefunctions, the luminescence
probability and the transition lifetime and compare with the experiments. Our
calculation shows that two orders of magnitudes of lifetime shortening can
occur in the transition when an extra electron is present.Comment: 15 pages, 2 Figs No change in Fig
Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation
Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF)
from z~6-10 show a steep decline in abundance with increasing redshift.
However, the LF is a convolution of the mass function of dark matter halos
(HMF)--which also declines sharply over this redshift range--and the
galaxy-formation physics that maps halo mass to galaxy luminosity. We consider
the strong observed evolution in the LF from z~6-10 in this context and
determine whether it can be explained solely by the behavior of the HMF. From
z~6-8, we find a residual change in the physics of galaxy formation
corresponding to a ~0.5 dex increase in the average luminosity of a halo of
fixed mass. On the other hand, our analysis of recent LF measurements at z~10
shows that the paucity of detected galaxies is consistent with almost no change
in the average luminosity at fixed halo mass from z~8. The LF slope also
constrains the variation about this mean such that the luminosity of galaxies
hosted by halos of the same mass are all within about an order-of-magnitude of
each other. We show that these results are well-described by a simple model of
galaxy formation in which cold-flow accretion is balanced by star formation and
momentum-driven outflows. If galaxy formation proceeds in halos with masses
down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able
to maintain an ionized intergalactic medium as long as the ratio of the
clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA
The orbit structure of Dynkin curves
Let G be a simple algebraic group over an algebraically closed field k;
assume that Char k is zero or good for G. Let \cB be the variety of Borel
subgroups of G and let e in Lie G be nilpotent. There is a natural action of
the centralizer C_G(e) of e in G on the Springer fibre \cB_e = {B' in \cB | e
in Lie B'} associated to e. In this paper we consider the case, where e lies in
the subregular nilpotent orbit; in this case \cB_e is a Dynkin curve. We give a
complete description of the C_G(e)-orbits in \cB_e. In particular, we classify
the irreducible components of \cB_e on which C_G(e) acts with finitely many
orbits. In an application we obtain a classification of all subregular orbital
varieties admitting a finite number of B-orbits for B a fixed Borel subgroup of
G.Comment: 12 pages, to appear in Math
Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss
Volumetric muscle loss (VML) is associated with loss of skeletal muscle function, and current treatments show limited efficacy. Here we show that bioconstructs suffused with genetically-labelled muscle stem cells (MuSCs) and other muscle resident cells (MRCs) are effective to treat VML injuries in mice. Imaging of bioconstructs implanted in damaged muscles indicates MuSCs survival and growth, and ex vivo analyses show force restoration of treated muscles. Histological analysis highlights myofibre formation, neovascularisation, but insufficient innervation. Both innervation and in vivo force production are enhanced when implantation of bioconstructs is followed by an exercise regimen. Significant improvements are also observed when bioconstructs are used to treat chronic VML injury models. Finally, we demonstrate that bioconstructs made with human MuSCs and MRCs can generate functional muscle tissue in our VML model. These data suggest that stem cell-based therapies aimed to engineer tissue in vivo may be effective to treat acute and chronic VML
Thermal rates for baryon and anti-baryon production
We use a form of the fluctuation-dissipation theorem to derive formulas
giving the rate of production of spin-1/2 baryons in terms of the fluctuations
of either meson or quark fields. The most general formulas do not assume
thermal or chemical equilibrium. When evaluated in a thermal ensemble we find
equilibration times on the order of 10 fm/c near the critical temperature in
QCD.Comment: 22 pages, 4 tables and 2 figures, REVTe
Loss of MED23 leads to poor prognosis in invasive breast cancer
Purpose of the study: The molecular mechanism of lymphovascular invasion (LVI) which determines the early metastatic phenotype in breast cancer is still not fully understood. Lead from the METABRIC study revealed that MED23 correlated with negative LVI status (p=0.00005). Hence MED23 expression was studied at the protein level for correlations with LVI and other clinical-pathological parameters.
Methods: The METABRIC BC cohort (n=1980) was evaluated for MED23 mRNA expression and prognostic impact externally validated using the online bc-GenExminer 4.0. Correlation between MED23 protein expression with clinicopathological parameters, patient outcome and other biomarkers were explored (Nottingham Tenovus series; n=1255) using immunohistochemistry (IHC).
Results: High MED23 mRNA expression was negatively associated with tumour stage and was differentially expressed in good prognosis integrative clusters 7 and 8 (p<0.001). MED23 IHC revealed nuclear expression (n-MED23). Although no association was found with LVI, higher n-MED23 expression correlated with low NPI, low grade, older age, ER+ status, low Ki67 index and low N-cadherin expression (p<0.05). Positive correlations with PTEN, GATA3, STAT3 and CDC42 (p<0.001), indicate possible interacting pathways. In univariate analysis, high n-MED23 expression showed better long-term patient outcome in the whole cohort and ER+ subgroups (p<0.05). Pooled MED23 expression in an external validation cohort (ER+LN-) also showed association with better patient outcome (p<0.02, HR=0.82, 95% CI 0.69-0.98).
Conclusion: Results of the study suggest that loss of n-MED23 is a marker of poor prognosis in invasive BC, results re-enforced by expression data. The difference in correlation with LVI at gene and protein level highlights the importance of IHC validation and indicates MED23 as a probable bystander in the LVI cascade
Chemobiosis reveals tardigrade tun formation is dependent on reversible cysteine oxidation
Tardigrades, commonly known as ‘waterbears’, are eight-legged microscopic invertebrates renowned for their ability to withstand extreme stressors, including high osmotic pressure, freezing temperatures, and complete desiccation. Limb retraction and substantial decreases to their internal water stores results in the tun state, greatly increasing their ability to survive. Emergence from the tun state and/or activity regain follows stress removal, where resumption of life cycle occurs as if stasis never occurred. However, the mechanism (s) through which tardigrades initiate tun formation is yet to be uncovered. Herein, we use chemobiosis to demonstrate that tardigrade tun formation is mediated by reactive oxygen species (ROS). We further reveal that tuns are dependent on reversible cysteine oxidation, and that this reversible cysteine oxidation is facilitated by the release of intracellular reactive oxygen species (ROS). We provide the first empirical evidence of chemobiosis and map the initiation and survival of tardigrades via osmobiosis, chemobiosis, and cryobiosis. In vivo electron paramagnetic spectrometry suggests an intracellular release of reactive oxygen species following stress induction; when this release is quenched through the application of exogenous antioxidants, the tardigrades can no longer survive osmotic stress. Together, this work suggests a conserved dependence of reversible cysteine oxidation across distinct tardigrade cryptobioses
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation
In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) T≈O(1) and Reynolds numbers ν[superscript −1]≫1; we present numerical results for a (stationary) steepening front for T=2 and 1≤ν[superscript −1]≤200.United States. Air Force Office of Scientific Research (AFOSR Grant FA9550-05-1-0114)United States. Air Force Office of Scientific Research (AFOSR Grant FA-9550-07-1-0425)Singapore-MIT Alliance for Research and Technolog
- …