37 research outputs found

    Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure

    Get PDF
    Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions

    Output Controllability of a Linear Dynamical System with Sparse Controls

    No full text
    In this article, we study the conditions to be satisfied by a discrete-time linear system to ensure output controllability using sparse control inputs. A set of necessary and sufficient conditions can be directly obtained by extending the Kalman rank test for output controllability. However, the verification of these conditions is computationally heavy due to their combinatorial nature. Therefore, we derive noncombinatorial conditions for output sparse controllability that can be verified with polynomial time complexity. Our results also provide bounds on the minimum sparsity level required to ensure output controllability of the system. This additional insight is useful for designing sparse control input that drives the system to any desired output.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work publicSignal Processing System

    Structure-Aware Sparse Bayesian Learning-Based Channel Estimation for Intelligent Reflecting Surface-Aided MIMO

    No full text
    This paper presents novel cascaded channel estimation techniques for an intelligent reflecting surface-aided multiple-input multiple-output system. Motivated by the channel angular sparsity at higher frequency bands, the channel estimation problem is formulated as a sparse vector recovery problem with an inherent Kronecker structure. We solve the problem using the sparse Bayesian learning framework which leads to a non-convex optimization problem. We offer two solution techniques to the problem based on alternating minimization and singular value decomposition. Our simulation results illustrate the superior performance of our methods in terms of accuracy and run time compared with the existing works.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Signal Processing System

    State Estimation of Linear Systems With Sparse Inputs and Markov-Modulated Missing Outputs

    No full text
    In this paper, we consider the problem of estimating the states of a linear dynamical system whose inputs are jointly sparse and outputs at a few unknown time instants are missing. We model the missing data mechanism using a Markov chain with two states representing the missing and non-missing data. This mechanism with memory governed by the Markov chain models intermittent outages due to communication channels and occlusions corresponding to moving objects. We rely on the sparse Bayesian learning framework to derive an estimation algorithm that uses Kalman smoothing to handle temporal correlation and the Viterbi algorithm to handle missing data. Further, we demonstrate the utility of our algorithm by applying it to the frequency division duplexed multiple input multiple output downlink channel estimation problem.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Circuits and System

    Near-field focusing using phased arrays with dynamic polarization control

    No full text
    Phased arrays in near-field communication allow the transmitter to focus wireless signals in a small region around the receiver. Proper focusing is achieved by carefully tuning the phase shifts and the polarization of the signals transmitted from the phased array. In this paper, we study the impact of polarization on near-field focusing and investigate the use of dynamic polar-ization control (DPC) phased arrays in this context. Our studies indicate that the optimal polarization configuration for near-field focusing varies spatially across the antenna array. Such a spatial variation motivates the need for DPC phased arrays which allow independent polarization control across different antennas. We show using simulations that DPC phased arrays in the near-field achieve a higher received signal-to-noise ratio than conventional switched- or dual-polarization phased arrays.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Nitin MyersMicrowave Sensing, Signals & SystemsSignal Processing System

    LiDAR-Based Occupancy Grid Map Estimation Exploiting Spatial Sparsity

    No full text
    The problem of estimating occupancy grids to support automotive driving applications using LiDAR sensor point clouds is considered. We formulate the problem as a sparse binary occupancy value reconstruction problem. Our proposed occupancy grid estimation method is based on pattern-coupled sparse Bayesian learning and exploits the inherent sparsity and spatial occupancy dependencies in LiDAR sensor measurements. The proposed method demonstrates enhanced detection capabilities compared to commonly used benchmark methods, as observed through testing on scenes from the nuScenes dataset.Signal Processing SystemsTeam Nitin Myer

    Learning Distributions Generated by Single-Layer ReLU Networks in the Presence of Arbitrary Outliers

    No full text
    We consider a set of data samples such that a fraction of the samples are arbitrary outliers, and the rest are the output samples of a single-layer neural network with rectified linear unit (ReLU) activation. Our goal is to estimate the parameters (weight matrix and bias vector) of the neural network, assuming the bias vector to be non-negative. We estimate the network parameters using the gradient descent algorithm combined with either the median- or trimmed mean-based filters to mitigate the effect of the arbitrary outliers. We then prove that O~(1p2+1ϵ2p)\tilde{O}( \frac{1}{p^2}+\frac{1}{\epsilon^2p}) samples and O~(d2p2+d2ϵ2p)\tilde{O} ( \frac{d^2}{p^2}+ \frac{d^2}{\epsilon^2p}) time are sufficient for our algorithm to estimate the neural network parameters within an error of ϵ\epsilon when the outlier probability is 1−p1-p, {where 2/3< p \leq 1} and the problem dimension is dd (with log factors being ignored here). Our theoretical and simulation results provide insights into the training complexity of ReLU neural networks in terms of the probability of outliers and problem dimension. Signal Processing System
    corecore