4 research outputs found

    Modeling and integration of N-glycan biomarkers in a comprehensive biomarker data model

    No full text
    Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve the understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hamper their use in research and clinical application. Mass spectrometry measures of 50 N-glycans on 7 serum proteins in liver disease were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized United States Food and Drug Administration-supported BioCompute Object. Using the biomarker data model allows the capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers; it can integrate N-glycan biomarker data with multi-source biomedical data and can foster discovery and insight within a unified data framework for glycan biomarker representation, thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/)

    COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model

    No full text
    In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, comorbidities, genetics and other factors-compounding the complexity of COVID-19 pathobiology and potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP, NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19) that will help researchers and diagnosticians alike

    Modeling and integration of N-glycan biomarkers in a comprehensive biomarker data model

    No full text
    Molecular biomarkers measure discrete components of biological processes that can contribute to disorders when impaired. Great interest exists in discovering early cancer biomarkers to improve outcomes. Biomarkers represented in a standardized data model, integrated with multi-omics data, may improve understanding and use of novel biomarkers such as glycans and glycoconjugates. Among altered components in tumorigenesis, N-glycans exhibit substantial biomarker potential, when analyzed with their protein carriers. However, such data are distributed across publications and databases of diverse formats, which hampers their use in research and clinical application. Mass spectrometry measures of fifty N-glycans, on seven serum proteins in liver disease, were integrated (as a panel) into a cancer biomarker data model, providing a unique identifier, standard nomenclature, links to glycan resources, and accession and ontology annotations to standard protein, gene, disease, and biomarker information. Data provenance was documented with a standardized FDA-supported BioCompute Object. Using the biomarker data model allows capture of granular information, such as glycans with different levels of abundance in cirrhosis, hepatocellular carcinoma, and transplant groups. Such representation in a standardized data model harmonizes glycomics data in a unified framework, making glycan-protein biomarker data exploration more available to investigators and to other data resources. The biomarker data model we describe can be used by researchers to describe their novel glycan and glycoconjugate biomarkers, can integrate N-glycan biomarker data with multi-source biomedical data, and can foster discovery and insight within a unified data framework for glycan biomarker representation thereby making the data FAIR (Findable, Accessible, Interoperable, Reusable) (https://www.go-fair.org/fair-principles/)
    corecore