73 research outputs found

    A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells.

    Get PDF
    Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, to make it easier to quantify and to allow a streamlined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (takes no more than a working day from sample collection to quantification), requires less starting material compared with standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy.Research in our laboratory is funded by Cancer Research UK (CRUK; programme grant C6/A11224), the European Research Council and the European Community Seventh Framework Programme (grant agreement no. HEALTH¬‐F2¬‐2010¬‐259893 (DDResponse)). Core funding is provided by Cancer Research UK (C6946/A14492) and the Wellcome Trust (WT092096). J.V.F. is funded by Cancer Research UK programme grant C6/A11224 and the Ataxia Telangiectasia Society. S.P.J. receives his salary from the University of Cambridge, supplemented by CRUK.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nprot.2015.06

    When two is not enough: a CtIP tetramer is required for DNA repair by Homologous Recombination.

    Get PDF
    Homologous recombination (HR) is central to the repair of double-strand DNA breaks that occur in S/G2 phases of the cell cycle. HR relies on the CtIP protein (Ctp1 in fission yeast, Sae2 in budding yeast) for resection of DNA ends, a key step in generating the 3'-DNA overhangs that are required for the HR strand-exchange reaction. Although much has been learned about the biological importance of CtIP in DNA repair, our mechanistic insight into its molecular functions remains incomplete. It has been recently discovered that CtIP and Ctp1 share a conserved tetrameric architecture that is mediated by their N-terminal domains and is critical for their function in HR. The specific arrangement of protein chains in the CtIP/Ctp1 tetramer indicates that an ability to bridge DNA ends might be an important feature of CtIP/Ctp1 function, establishing an intriguing similarity with the known ability of the MRE11-RAD50-NBS1 complex to link DNA ends. Although the exact mechanism of action remains to be elucidated, the remarkable evolutionary conservation of CtIP/Ctp1 tetramerisation clearly points to its crucial role in HR.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/19491034.2015.1086050

    Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation.

    Get PDF
    The DNA-damage checkpoint kinase Chk1 is essential in higher eukaryotes due to its role in maintaining genome stability in proliferating cells. CHK1 gene deletion is embryonically lethal, and Chk1 inhibition in replicating cells causes cell-cycle defects that eventually lead to perturbed replication and replication-fork collapse, thus generating endogenous DNA damage. What is the cause of replication-fork collapse when Chk1 is inactivated, however, remains poorly understood. Here, we show that generation of DNA double-strand breaks at replication forks when Chk1 activity is compromised relies on the DNA endonuclease complex Mus81/Eme1. Importantly, we show that Mus81/Eme1-dependent DNA damage--rather than a global increase in replication-fork stalling--is the cause of incomplete replication in Chk1-deficient cells. Consequently, Mus81/Eme1 depletion alleviates the S-phase progression defects associated with Chk1 deficiency, thereby increasing cell survival. Chk1-mediated protection of replication forks from Mus81/Eme1 even under otherwise unchallenged conditions is therefore vital to prevent uncontrolled fork collapse and ensure proper S-phase progression in human cells

    A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells.

    Get PDF
    Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, to make it easier to quantify and to allow a streamlined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (takes no more than a working day from sample collection to quantification), requires less starting material compared with standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy.Research in our laboratory is funded by Cancer Research UK (CRUK; programme grant C6/A11224), the European Research Council and the European Community Seventh Framework Programme (grant agreement no. HEALTH¬‐F2¬‐2010¬‐259893 (DDResponse)). Core funding is provided by Cancer Research UK (C6946/A14492) and the Wellcome Trust (WT092096). J.V.F. is funded by Cancer Research UK programme grant C6/A11224 and the Ataxia Telangiectasia Society. S.P.J. receives his salary from the University of Cambridge, supplemented by CRUK.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nprot.2015.06

    Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells.

    Get PDF
    In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping to define synthetic lethality, synthetic viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening in mammalian systems by using haploid cells, chemical mutagenesis and next-generation sequencing, providing a new tool to explore mammalian genetic interactions

    A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1.

    Get PDF
    BACKGROUND: The cell-cycle checkpoint kinase Chk1 is essential in mammalian cells due to its roles in controlling processes such as DNA replication, mitosis and DNA-damage responses. Despite its paramount importance, how Chk1 controls these functions remains unclear, mainly because very few Chk1 substrates have hitherto been identified. RESULTS: Here, we combine a chemical genetics approach with high-resolution mass spectrometry to identify novel Chk1 substrates and their phosphorylation sites. The list of targets produced reveals the potential impact of Chk1 function not only on processes where Chk1 was already known to be involved, but also on other key cellular events such as transcription, RNA splicing and cell fate determination. In addition, we validate and explore the phosphorylation of transcriptional co-repressor KAP1 Ser473 as a novel DNA-damage-induced Chk1 site. CONCLUSIONS: By providing a substantial set of potential Chk1 substrates, we present opportunities for studying unanticipated functions for Chk1 in controlling a wide range of cellular processes. We also refine the Chk1 consensus sequence, facilitating the future prediction of Chk1 target sites. In addition, our identification of KAP1 Ser473 phosphorylation as a robust readout for Chk1 activity could be used to explore the in vivo effects of Chk1 inhibitors that are being developed for clinical evaluation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity.

    Get PDF
    DNA double-strand breaks (DSBs) are perhaps the most toxic of all DNA lesions, with defects in the DNA-damage response to DSBs being associated with various human diseases. Although it is known that DSB repair pathways are tightly regulated by ubiquitylation, we do not yet have a comprehensive understanding of how deubiquitylating enzymes (DUBs) function in DSB responses. Here, by carrying out a multidimensional screening strategy for human DUBs, we identify several with hitherto unknown links to DSB repair, the G2/M DNA-damage checkpoint and genome-integrity maintenance. Phylogenetic analyses reveal functional clustering within certain DUB subgroups, suggesting evolutionally conserved functions and/or related modes of action. Furthermore, we establish that the DUB UCHL5 regulates DSB resection and repair by homologous recombination through protecting its interactor, NFRKB, from degradation. Collectively, our findings extend the list of DUBs promoting the maintenance of genome integrity, and highlight their potential as therapeutic targets for cancer.This is the author's accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ncb302

    CtIP tetramer assembly is required for DNA-end resection and repair.

    Get PDF
    Mammalian CtIP protein has major roles in DNA double-strand break (DSB) repair. Although it is well established that CtIP promotes DNA-end resection in preparation for homology-dependent DSB repair, the molecular basis for this function has remained unknown. Here we show by biophysical and X-ray crystallographic analyses that the N-terminal domain of human CtIP exists as a stable homotetramer. Tetramerization results from interlocking interactions between the N-terminal extensions of CtIP's coiled-coil region, which lead to a 'dimer-of-dimers' architecture. Through interrogation of the CtIP structure, we identify a point mutation that abolishes tetramerization of the N-terminal domain while preserving dimerization in vitro. Notably, we establish that this mutation abrogates CtIP oligomer assembly in cells, thus leading to strong defects in DNA-end resection and gene conversion. These findings indicate that the CtIP tetramer architecture described here is essential for effective DSB repair by homologous recombination.We thank M. Kilkenny for help with the collection of X-ray diffraction data, A. Sharff and P. Keller for help with X-ray data processing and J.D. Maman for assistance with SEC-MALS. This work was supported by a Wellcome Trust Senior Research Fellowship award in basic biomedical sciences (L.P.), an Isaac Newton Trust research grant (L.P. and O.R.D.) and a Cambridge Overseas Trust PhD studentship (M.D.S.). Research in the laboratory of S.P.J. is funded by Cancer Research UK (CRUK; programme grant C6/A11224), the European Research Council and the European Community Seventh Framework Programme (grant agreement no. HEALTH-F2-2010-259893 (DDResponse)). Core funding is provided by Cancer Research UK (C6946/A14492) and the Wellcome Trust (WT092096). S.P.J. receives his salary from the University of Cambridge, supplemented by CRUK. J.V.F. is funded by Cancer Research UK programme grant C6/A11224 and the Ataxia Telangiectasia Society. R.B. and J.C. are funded by Cancer Research UK programme grant C6/A11224. Y.G. and M.D. are funded by the European Research Council grant DDREAM.This is the accepted manuscript of a paper published in Nature Structural & Molecular Biology, 22, 150–157 (2015) doi: 10.1038/nsmb.293

    Small-molecule-induced DNA damage identifies alternative DNA structures in human genes.

    Get PDF
    Guanine-rich DNA sequences that can adopt non-Watson-Crick structures in vitro are prevalent in the human genome. Whether such structures normally exist in mammalian cells has, however, been the subject of active research for decades. Here we show that the G-quadruplex-interacting drug pyridostatin promotes growth arrest in human cancer cells by inducing replication- and transcription-dependent DNA damage. A chromatin immunoprecipitation sequencing analysis of the DNA damage marker γH2AX provided the genome-wide distribution of pyridostatin-induced sites of damage and revealed that pyridostatin targets gene bodies containing clusters of sequences with a propensity for G-quadruplex formation. As a result, pyridostatin modulated the expression of these genes, including the proto-oncogene SRC. We observed that pyridostatin reduced SRC protein abundance and SRC-dependent cellular motility in human breast cancer cells, validating SRC as a target of this drug. Our unbiased approach to define genomic sites of action for a drug establishes a framework for discovering functional DNA-drug interactions
    corecore