39 research outputs found

    Substrate-induced antiferromagnetism of an Fe monolayer on the Ir(001) surface

    Full text link
    We present detailed ab initio study of structural and magnetic stability of a Fe-monolayer on the fcc(001) surface of iridium. The Fe-monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. On the contrary an unrelaxed Fe/Ir(001) sample has a ferromagnetic ground state. The antiferromagnetism is thus stabilized by the decreased Fe-Ir layer spacing in striking contrast to the recently experimentally observed antiferromagnetism of the Fe/W(001) system which exists also for an ideal bulk-truncated, unrelaxed geometry. The calculated layer relaxations for Fe/Ir(001) agree reasonably well with recent experimental LEED data. The present study centers around the evaluation of pair exchange interactions between Fe-atoms in the Fe-overlayer as a function of the Fe/Ir interlayer distance which allows for a detailed understanding of the antiferromagnetism of a Fe/Ir(001) overlayer. Furthermore, our calculations indicate that the nature of the true ground state could be more complex and display a spin spiral-like rather than a c(2x2)-antiferromagnetic order. Finally, the magnetic stability of the Fe monolayer on the Ir(001) surface is compared to the closely related Fe/Rh(001) system.Comment: 8 pages, 4 figure

    Suppression of material transfer at contacting surfaces: The effect of adsorbates on Al/TiN and Cu/diamond interfaces from first-principles calculations

    Full text link
    The effect of monolayers of oxygen (O) and hydrogen (H) on the possibility of material transfer at aluminium/titanium nitride (Al/TiN) and copper/diamond (Cu/Cdia_{\text{dia}}) interfaces, respectively, were investigated within the framework of density functional theory (DFT). To this end the approach, contact, and subsequent separation of two atomically flat surfaces consisting of the aforementioned pairs of materials were simulated. These calculations were performed for the clean as well as oxygenated and hydrogenated Al and Cdia_{\text{dia}} surfaces, respectively. Various contact configurations were considered by studying several lateral arrangements of the involved surfaces at the interface. Material transfer is typically possible at interfaces between the investigated clean surfaces; however, the addition of O to the Al and H to the Cdia_{\text{dia}} surfaces was found to hinder material transfer. This passivation occurs because of a significant reduction of the adhesion energy at the examined interfaces, which can be explained by the distinct bonding situations.Comment: 27 pages, 8 figure
    corecore