38 research outputs found

    Intraretinal Layer Segmentation Using Cascaded Compressed U-Nets

    Get PDF
    Reliable biomarkers quantifying neurodegeneration and neuroinflammation in central nervous system disorders such as Multiple Sclerosis, Alzheimer’s dementia or Parkinson’s disease are an unmet clinical need. Intraretinal layer thicknesses on macular optical coherence tomography (OCT) images are promising noninvasive biomarkers querying neuroretinal structures with near cellular resolution. However, changes are typically subtle, while tissue gradients can be weak, making intraretinal segmentation a challenging task. A robust and efficient method that requires no or minimal manual correction is an unmet need to foster reliable and reproducible research as well as clinical application. Here, we propose and validate a cascaded two-stage network for intraretinal layer segmentation, with both networks being compressed versions of U-Net (CCU-INSEG). The first network is responsible for retinal tissue segmentation from OCT B-scans. The second network segments eight intraretinal layers with high fidelity. At the post-processing stage, we introduce Laplacian-based outlier detection with layer surface hole filling by adaptive non-linear interpolation. Additionally, we propose a weighted version of focal loss to minimize the foreground–background pixel imbalance in the training data. We train our method using 17,458 B-scans from patients with autoimmune optic neuropathies, i.e., multiple sclerosis, and healthy controls. Voxel-wise comparison against manual segmentation produces a mean absolute error of 2.3 μm, outperforming current state-of-the-art methods on the same data set. Voxel-wise comparison against external glaucoma data leads to a mean absolute error of 2.6 μm when using the same gold standard segmentation approach, and 3.7 μm mean absolute error in an externally segmented data set. In scans from patients with severe optic atrophy, 3.5% of B-scan segmentation results were rejected by an experienced grader, whereas this was the case in 41.4% of B-scans segmented with a graph-based reference method. The validation results suggest that the proposed method can robustly segment macular scans from eyes with even severe neuroretinal changes

    Multiscale networks in multiple sclerosis.

    Get PDF
    Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype

    Pathways validation for canonical pathway.

    Full text link
    Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.</div

    Venn diagram describing the overlap between the paths identified in the single-cell analysis and the paths identified in the UNIPROT database.

    Full text link
    (1) CD56 Neg > INL—mRNFL > EDSS—T25WT; (2) Total CD8 > NGMV—T2LV > EDSS - 9HPT–SDMT; (3) MK03 > Total T Cells > mRNFL > T25WT; (4) HSPB1 > B Memory > NBV > T25WT; (5) STAT6 > Th17 > NGMV Change > Years with Disease; (6) KS6B1—LCK > Total T Cells—Th1 Non Classic > NGMV—T2LV> LCVA Change—MSSS—Years since Relapse; (7) MP2K1—STAT6 > Th17 > mRNFL > T25WT—ARMSS (8) MP2K1—STAT6 > Th17 > INL > EDSS Change; (9) MP2K1 > CD8 Treg > GCIPL > EDSS Change; (10) Atypical B Memory–B Memory–Th1 Classic > mRNFL–T2LV > EDSS–T25WT.</p

    Linear regression for HSPB1 node.

    Full text link
    Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.</div

    Path analysis in MS patients.

    Full text link
    Representations of the multi-layer paths identified from the Boolean simulations when the input started at the cytomics layer. The top paths (those that passed the test for negative controls) are shown for each input (gene, protein, or cell)-output (clinical phenotype) pair. The nodes for each layer are color-coded to represent the degree of a given node, i.e., the number of times the node appears in a path, as a percentage of the total number of paths. High resolution paths are available at https://keithtopher.github.io/fivelayer_pathways/.</p
    corecore