5 research outputs found

    A Spatial Structural Derivative Model for Ultraslow Diffusion

    Full text link
    This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function exp(x)is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function exp(x)in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion.Comment: 13 pages, 3 figure

    A spatial structural derivative model for ultraslow diffusion

    No full text
    This study investigates the ultraslow diffusion by a spatial structural derivative, in which the exponential function ex is selected as the structural function to construct the local structural derivative diffusion equation model. The analytical solution of the diffusion equation is a form of Biexponential distribution. Its corresponding mean squared displacement is numerically calculated, and increases more slowly than the logarithmic function of time. The local structural derivative diffusion equation with the structural function ex in space is an alternative physical and mathematical modeling model to characterize a kind of ultraslow diffusion
    corecore