366 research outputs found
Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs
The paper considers gossip distributed estimation of a (static) distributed
random field (a.k.a., large scale unknown parameter vector) observed by
sparsely interconnected sensors, each of which only observes a small fraction
of the field. We consider linear distributed estimators whose structure
combines the information \emph{flow} among sensors (the \emph{consensus} term
resulting from the local gossiping exchange among sensors when they are able to
communicate) and the information \emph{gathering} measured by the sensors (the
\emph{sensing} or \emph{innovations} term.) This leads to mixed time scale
algorithms--one time scale associated with the consensus and the other with the
innovations. The paper establishes a distributed observability condition
(global observability plus mean connectedness) under which the distributed
estimates are consistent and asymptotically normal. We introduce the
distributed notion equivalent to the (centralized) Fisher information rate,
which is a bound on the mean square error reduction rate of any distributed
estimator; we show that under the appropriate modeling and structural network
communication conditions (gossip protocol) the distributed gossip estimator
attains this distributed Fisher information rate, asymptotically achieving the
performance of the optimal centralized estimator. Finally, we study the
behavior of the distributed gossip estimator when the measurements fade (noise
variance grows) with time; in particular, we consider the maximum rate at which
the noise variance can grow and still the distributed estimator being
consistent, by showing that, as long as the centralized estimator is
consistent, the distributed estimator remains consistent.Comment: Submitted for publication, 30 page
Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields
We present \emph{telescoping} recursive representations for both continuous
and discrete indexed noncausal Gauss-Markov random fields. Our recursions start
at the boundary (a hypersurface in , ) and telescope inwards.
For example, for images, the telescoping representation reduce recursions from
to , i.e., to recursions on a single dimension. Under
appropriate conditions, the recursions for the random field are linear
stochastic differential/difference equations driven by white noise, for which
we derive recursive estimation algorithms, that extend standard algorithms,
like the Kalman-Bucy filter and the Rauch-Tung-Striebel smoother, to noncausal
Markov random fields.Comment: To appear in the Transactions on Information Theor
Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs
This paper presents a systematic methodology based on the algebraic theory of
signal processing to classify and derive fast algorithms for linear transforms.
Instead of manipulating the entries of transform matrices, our approach derives
the algorithms by stepwise decomposition of the associated signal models, or
polynomial algebras. This decomposition is based on two generic methods or
algebraic principles that generalize the well-known Cooley-Tukey FFT and make
the algorithms' derivations concise and transparent. Application to the 16
discrete cosine and sine transforms yields a large class of fast algorithms,
many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar
Discrete Signal Processing on Graphs: Frequency Analysis
Signals and datasets that arise in physical and engineering applications, as
well as social, genetics, biomolecular, and many other domains, are becoming
increasingly larger and more complex. In contrast to traditional time and image
signals, data in these domains are supported by arbitrary graphs. Signal
processing on graphs extends concepts and techniques from traditional signal
processing to data indexed by generic graphs. This paper studies the concepts
of low and high frequencies on graphs, and low-, high-, and band-pass graph
filters. In traditional signal processing, there concepts are easily defined
because of a natural frequency ordering that has a physical interpretation. For
signals residing on graphs, in general, there is no obvious frequency ordering.
We propose a definition of total variation for graph signals that naturally
leads to a frequency ordering on graphs and defines low-, high-, and band-pass
graph signals and filters. We study the design of graph filters with specified
frequency response, and illustrate our approach with applications to sensor
malfunction detection and data classification
Distributing the Kalman Filter for Large-Scale Systems
This paper derives a \emph{distributed} Kalman filter to estimate a sparsely
connected, large-scale, dimensional, dynamical system monitored by a
network of sensors. Local Kalman filters are implemented on the
(dimensional, where ) sub-systems that are obtained after
spatially decomposing the large-scale system. The resulting sub-systems
overlap, which along with an assimilation procedure on the local Kalman
filters, preserve an th order Gauss-Markovian structure of the centralized
error processes. The information loss due to the th order Gauss-Markovian
approximation is controllable as it can be characterized by a divergence that
decreases as . The order of the approximation, , leads to a lower
bound on the dimension of the sub-systems, hence, providing a criterion for
sub-system selection. The assimilation procedure is carried out on the local
error covariances with a distributed iterate collapse inversion (DICI)
algorithm that we introduce. The DICI algorithm computes the (approximated)
centralized Riccati and Lyapunov equations iteratively with only local
communication and low-order computation. We fuse the observations that are
common among the local Kalman filters using bipartite fusion graphs and
consensus averaging algorithms. The proposed algorithm achieves full
distribution of the Kalman filter that is coherent with the centralized Kalman
filter with an th order Gaussian-Markovian structure on the centralized
error processes. Nowhere storage, communication, or computation of
dimensional vectors and matrices is needed; only dimensional
vectors and matrices are communicated or used in the computation at the
sensors
- …