29 research outputs found
The GREENBOT dataset: Multimodal mobile robotic dataset for a typical Mediterranean greenhouse
This paper introduces an innovative dataset specifically crafted for
challenging agricultural settings (a greenhouse), where achieving precise
localization is of paramount importance. The dataset was gathered using a
mobile platform equipped with a set of sensors typically used in mobile robots,
as it was moved through all the corridors of a typical Mediterranean greenhouse
featuring tomato crop. This dataset presents a unique opportunity for
constructing detailed 3D models of plants in such indoor-like space, with
potential applications such as robotized spraying. For the first time to the
best knowledge of authors, a dataset suitable to put at test Simultaneous
Localization and Mapping (SLAM) methods is presented in a greenhouse
environment, which poses unique challenges. The suitability of the dataset for
such goal is assessed by presenting SLAM results with state-of-the-art
algorithms. The dataset is available online in
\url{https://arm.ual.es/arm-group/dataset-greenhouse-2024/}.Comment: 29 pages, 15 figure
Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study
Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe
Odor recognition in robotics applications by discriminative time-series modeling
Schleif F-M, Hammer B, Gonzalez Monroy J, et al. Odor recognition in robotics applications by discriminative time-series modeling. PATTERN ANALYSIS AND APPLICATIONS. 2016;19(1):207-220.Odor classification by a robot equipped with an electronic nose (e-nose) is a challenging task for pattern recognition since volatiles have to be classified quickly and reliably even in the case of short measurement sequences, gathered under operation in the field. Signals obtained in these circumstances are characterized by a high-dimensionality, which limits the use of classical classification techniques based on unsupervised and semi-supervised settings, and where predictive variables can be only identified using wrapper or post-processing techniques. In this paper, we consider generative topographic mapping through time (GTM-TT) as an unsupervised model for time-series inspection, based on hidden Markov models regularized by topographic constraints. We further extend the model such that supervised classification and relevance learning can be integrated, resulting in supervised GTM-TT. Then, we evaluate the suitability of this new technique for the odor classification problem in robotics applications. The performance is compared with classical techniques as nearest neighbor, as an absolute baseline, support vector machine and a recent time-series kernel approach, demonstrating the eligibility of our approach for high-dimensional data. Additionally, we exploit the learning system introduced in this work, providing a measure of the relevance of each sensor and individual time points in the classification process, from which important information can be extracted
Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database
Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p < 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p < 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013