53 research outputs found

    Trends in plant research using molecular markers

    Get PDF
    The evolution of the improvement in the feld of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifcally, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplifed polymorphic DNA, amplifed fragment length polymorphism, microsatellites, and singlenucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this feld of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top fve countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its eforts in their main crops as the US for wheat or maize, while China and India for wheat and rice

    Global Research on Plant Nematodes

    Get PDF
    Background: The more than 4100 species of phytoparasitic nematodes are responsible for an estimated economic loss in the agricultural sector of nearly $125 billion annually. Knowing the main lines of research and concerns about nematodes that affect plants is fundamental. Methods: For this reason, an analysis using bibliometric data has been carried out, with the aim of tracing the state of world research in this field, as well as knowing the main lines of work, their priorities, and their evolution. Results: This will allow us to establish strategic lines for the future development of this research. Conclusions: The analysis has allowed us to detect that the interest in nematodes affecting plants has not stopped growing in the last decades, and that tomato, soybean, and potato crops are the ones that generate the most interest, as well as nematodes of the genus Meloidogyne and Globodera. Likewise, we have detected that the main lines of research in this field are focused on biological control and host–parasite interaction

    A new approach for detection and quantification of microalgae in industrial-scale microalgal cultures

    Get PDF
    In industrial-scale cultures, non-target microalgae compete with the desired species for nutrients and CO2, thus reducing the growth rate of the target species and the quality of the produced biomass. Microalgae identification is generally considered a complicated issue although, in the last few years, new molecular methods have helped to rectify this problem. Of the different techniques available, DNA barcoding has proven very useful in providing rapid, accurate and automatable species identification; in this work, it is used to assess the genomic identity of the microalga species Scenedesmus almeriensis, a common strain in industrial-scale cultures. Barcode markers rbcL and ITS1-5.8S-ITS2 were sequenced and the obtained genomic information was used to design a quantitative PCR assay to precisely quantify the S. almeriensis concentration in microalgal cultures of industrial interest. TaqMan chemistry was used to quantify down to 1 µg/L dry weight of S. almeriensis cells, as well as to detect the presence of other concentrated microalgae cultures. A simple direct PCR approach was also investigated to avoid classic DNA extraction and to reduce total experiment time to approximately 2 hours. The objective was to design strain-specific tools able to confirm and quantify the presence of different strains in any microalgae culture so as to achieve maximal productivity and quality of the produced biomass

    Microalgae research worldwide

    Get PDF
    In this paper, worldwide research trends in the microalgae field are analyzed based on a bibliometric study. We have looked at the number of publications and their distribution, as well as the most relevant journals and keywords, to determine the evolution and latest tendencies in this field. The results confirm that this is a fast-growing area in terms of the number of publications. The most relevant journals on this subject are Bioresource Technology and Algal Research. Although the majority of papers come out of the USA, the most relevant institutions are actually located in China, France and Spain. The most frequently cited strains are Chlorella and Chlamydomonas. The main keywords that appear in over 1,000 articles are generally related to microalgae cultivation applications such as ‘biomass, biofuel, and lipids’ while others are related to the methodology; for instance, ‘bioreactor’. Of all the keywords, ‘biomass’ stands out, as it appears in almost 20% of publications. Bibliographic analysis confirms that Microalgae Biotechnology is a very active field, where scientific productivity has exponentially increased over recent years in tandem with industrial production. Therefore, expectations are high in this field for the near future

    Evaluation of the performance of slaughterhouse surveillance for bovine tuberculosis detection in Castilla y Leon, Spain

    Get PDF
    Post-mortem inspection (PMI) of routinely slaughtered cattle in abattoirs is an extremely valuable tool for detecting bovine tuberculosis (bTB) infected herds that can supplement active surveillance activities. However, its true performance is difficult to assess due to the multiple factors that may affect it. Here, we determined relative efficiencies in the detection of bTB-compatible lesions and probabilities of subsequent laboratory confirmation of abattoirs located in Castilla y Leon, one of the regions with the largest cattle population in Spain, between 2010 and 2017. The slaughtered animal population was split based on the results of the ante-mortem tests (reactors or non-reactors), and two generalized linear multivariable mixed models were fitted to each subpopulation to calculate the risk of lesion detection and laboratory confirmation per abattoir while accounting for the effect of potential confounding variables. Throughout the 8-year period, ~30,000 reactors and >2.8 million non-reactor animals in the ante-mortem tests were culled in the abattoirs under study. Bovine TB compatible lesions were detected in 4,710 (16%) reactors and 828 (0.03%) non-reactor animals, of which >95% were confirmed as infected through bacteriology. The probability of disclosure of bTB-like lesions was associated with the animal subpopulation, type of source unit, the herd size, the year of slaughter, the breed and age of the animal, and/or the season of slaughter. The probabilities of detection of bTB-like lesions varied largely depending on the abattoir in both subpopulations, ranging from 603 to 3,070 per 10,000 animals for the reactors and 0.2–16.1 per 10,000 animals for the nonreactor animals. Results obtained here will help to quantify the performance of PMI in abattoirs in Castilla y Leon and the between-abattoir variability, and to identify animals at increased risk of having bTB-like lesions detected during PMI based on animal- and farm-related factors

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore