2 research outputs found

    Electromagnetic attenuation of eight earthquakes registered in Mexico using FFT-based spectrum and t-test statistical analysis for ULF Q-R ratios signals

    No full text
    A method to improve the detection of seismo-magnetic signals is presented herein. Eight events registered for periods of 24 hours with seismic activity were analyzed and compared with non-seismic periods of the same duration. The distance between the earthquakes (EQs) and the ultra-low frequency detector is of  ρ = (1.8) 100.45M, where M is the magnitude of the EQ reported by the Seismological National Service of Mexico, in a period of three years. An improved fast Fourier transform analysis in the form of the ratio of the vertical magnetic field component to the horizontal one (Q = Bz/Bx) has been developed. There are important differences between the frequencies obtained during the days of seismic activity compared with those with no seismic activity

    Experimental studies of anomalous radon activity in the Tlamacas Mountain, Popocatepetl Volcano area, México: new tools to study lithosphere-atmosphere coupling for forecasting volcanic and seismic events

    No full text
    <p>This study presents and discusses the results of soil radon monitoring at three different volcano sites and one reference site, from December 2007 to January 2009. This relates to the activity of the Popocatepetl Volcano and a radon survey and gamma-ray spectrometry in the area between Paso de Cortes and Tlamacas Mountain, and in the adjacent regions. The results are applied to the aspects of atmosphere electricity and lithosphere-atmosphere coupling in relation to the forecasting of volcano and earthquake activity. The monitoring of radon release reveals a decrease in radon concentration (down to total suppression) with approaching moderate volcanic eruptions. The behavior of the radon activity at the Tlamacas site is more apparent, compared to other observational sites. The average level of radon release observed at the Tlamacas site is much higher, with some characteristic variations. Both the radon survey and gamma-ray spectrometry indicate intensive diffusion radon emission localized in the area of Tlamacas Mountain. The average radon concentration in the area of Tlamacas is about 10-20-fold greater than the background volcano values. The new concept of lithosphere-atmosphere coupling is presented: intensive radon release in high elevated areas shortens and modifies the Earth-to-thunderclouds electric circuit, which provokes microdischarges into the air close to the ground, attracting lightning discharges. This concept attempts to explain in a new way the noise-like geomagnetic emissions registered before major earthquakes, and it promotes interest for the study of thunderstorm activity in seismo-active zones, as a promising instrument for earthquake forecasting.</p&gt
    corecore