4 research outputs found

    SAR Despeckling Using Overcomplete Convolutional Networks

    Full text link
    Synthetic Aperture Radar (SAR) despeckling is an important problem in remote sensing as speckle degrades SAR images, affecting downstream tasks like detection and segmentation. Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods. Traditional CNNs try to increase the receptive field size as the network goes deeper, thus extracting global features. However,speckle is relatively small, and increasing receptive field does not help in extracting speckle features. This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field. The proposed network consists of an overcomplete branch to focus on the local structures and an undercomplete branch that focuses on the global structures. We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.Comment: Accepted to International Geoscience and Remote Sensing Symposium (IGARSS), 2022. Our code is available at https://github.com/malshaV/sar_overcomplet

    Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

    No full text
    Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
    corecore