11 research outputs found

    Flash sintered Al2O3-YSZ-Boron composite for tribological applications

    Get PDF
    Please click Additional Files below to see the full abstract

    Pharmacogenomics: The Right Drug to the Right Person

    Get PDF
    Pharmacogenomics is the branch of pharmacology which deals with the influence of genetic variation on drug response in patients by correlating gene expression or single-nucleotide polymorphisms with a drug's efficacy or toxicity. It aims to develop rational means to optimize drug therapy, with respect to the patients genotype, to ensure maximum efficacy with minimal adverse effects. Such approaches promise the advent of personalized medicine, in which drugs and drug combinations are optimized for each individual's unique genetic makeup. Pharmacogenomics is the whole genome application of pharmacogenetics, which examines the single gene interactions with drugs

    Cermet Systems: Synthesis, Properties, and Applications

    No full text
    Cermet is an advanced class of material consisting of a hard ceramic phase along with a metallic binding phase with the combined advantages of both the ceramic and the metal phase. The superior properties of this class of materials are particularly useful in high-temperature, tribological, and machining applications. This review paper seeks to provide a comprehensive overview of the various cermet systems. More specifically, the most commonly used cermet systems based on tungsten carbide (WC), titanium carbide (TiC), titanium carbonitride (TiCN), and aluminum oxide (Al2O3) are discussed based on their development, properties, and applications. The effect of different metallic binders and their composition on the tribological and mechanical properties of these cermet systems is elaborated. The most common processing techniques for cermet systems, such as powder metallurgy (PM), reaction synthesis (RS), thermal spray (TS), cold spray (CS), and laser-based additive manufacturing techniques are discussed. The influence of the processing parameters in each case is evaluated. Finally, the applications and challenges of cermet systems are summarized

    Radiative implication of a haze event over Eastern India

    Get PDF
    AbstractAerosol haze degrades visibility by the process of absorption and scattering of aerosols. In the present study an attempt has been made to characterize the physical and optical properties of aerosols during a haze event on 29 March 2012 and assess its implication on radiative forcing. In this context representative clear (2 March 2012) and normal (19 March 2012) days were identified in terms of their Aerosol Optical Depth (AOD) loading over Hyderabad. On the hazy day, a huge spread of haze was observed over the eastern part of India by MODerate resolution Imaging Spectroradiometer (MODIS) on board Terra satellite which is represented by high Aerosol Optical Depth at 550nm. In-situ observations on hazy day showed an enhancement of columnar AOD500 respectively by 4.5 and 1.8 fold in comparison to clear and normal days. Significant increase in the scattering coefficient and a moderate enhancement of Single Scattering Albedo (SSA) are observed on hazy day compared to normal day. Study also showed that Diffuse-to-Direct- beam irradiance Ratio (DDR) had increased 4.5 times at 496.6nm spectral band on hazy day. LIDAR (LIght Detection And Ranging) observations on hazy night showed a threefold increase in aerosol backscattering below the Atmospheric Boundary Layer (ABL) compared to normal representative night. The hazy day is characterized by large negative surface forcing (−87.82W m−2) when compared to normal day (−53.90W m−2). A large positive enhancement of atmospheric forcing of 30.56W m−2 is observed on hazy day compared to normal day
    corecore