15 research outputs found

    Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells

    Get PDF
    Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection

    Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells

    Get PDF
    Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection

    Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity.

    No full text
    The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination

    IL-17-induced dimerization of IL-17RA drives the formation of the IL-17 signalosome to potentiate signaling.

    No full text
    Signaling through innate immune receptors such as the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily proceeds via the assembly of large membrane-proximal complexes or "signalosomes." Although structurally distinct, the IL-17 receptor family triggers cellular responses that are typical of innate immune receptors. The IL-17RA receptor subunit is shared by several members of the IL-17 family. Using a combination of crystallographic, biophysical, and mutational studies, we show that IL-17A, IL-17F, and IL-17A/F induce IL-17RA dimerization. X-ray analysis of the heteromeric IL-17A complex with the extracellular domains of the IL-17RA and IL-17RC receptors reveals that cytokine-induced IL-17RA dimerization leads to the formation of a 2:2:2 hexameric signaling assembly. Furthermore, we demonstrate that the formation of the IL-17 signalosome potentiates IL-17-induced IL-36γ and CXCL1 mRNA expression in human keratinocytes, compared with a dimerization-defective IL-17RA variant

    Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells.

    No full text
    Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection

    TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis.

    No full text
    Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases

    Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A

    Get PDF
    International audienceBACKGROUND & AIMS: Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a multifunctional protein playing a crucial role in diverse steps of the viral replication cycle and perturbing multiple host cell pathways. We showed previously that removal of a region in domain 2 (D2) of NS5A (mutant NS5A(D2Δ)) is dispensable for viral replication in hepatoma cell lines. By using a mouse model and immune-competent cell systems, we studied the role of D2 in controlling the innate immune response. METHODS: In vivo replication competence of NS5A(D2Δ) was studied in transgenic mice with human liver xenografts. Results were validated using primary human hepatocytes (PHHs) and mechanistic analyses were conducted in engineered Huh7 hepatoma cells with reconstituted innate signaling pathways. RESULTS: Although the deletion in NS5A removed most of the interferon (IFN) sensitivity determining-region, mutant NS5A(D2Δ) was as sensitive as the wild type to IFN-α and IFN-λ in vitro, but severely attenuated in vivo. This attenuation could be recapitulated in PHHs and was linked to higher activation of the IFN response, concomitant with reduced viral replication and virus production. Importantly, immune-reconstituted Huh7-derived cell lines revealed a sequential activation of the IFN-response via RIG-I (retinoic acid-inducible gene I) and MDA5 (Myeloma differentiation associated factor 5), respectively, that was significantly higher in the case of the mutant lacking most of NS5A D2. CONCLUSIONS: Our study reveals an important role of NS5A D2 for suppression of the IFN response that is activated by HCV via RIG-I and MDA5 in a sequential manner

    A coding IRAK2 variant compromises TLR signaling and is associated with colorectal cancer survival.

    No full text
    Within innate immune signaling pathways, Interleukin-1 receptor (IL-1R&)-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors (TLR) and the IL-1R. Whereas human IRAK4-deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and TLR-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3-9% of individuals in different ethnic groups and our studies uncovered a significant genetic association of rs35060588 with colorectal cancer survival. This for the first time firmly implicates human IRAK2 in human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point

    Identification of Interleukin1β as an Amplifier of Interferon alpha-induced Antiviral Responses.

    No full text
    The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1β). Consistently, we found that IL1β enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1β receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1β is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies

    Identification of Interleukin1β as an Amplifier of Interferon alpha-induced Antiviral Responses.

    No full text
    The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1β). Consistently, we found that IL1β enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1β receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1β is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies
    corecore