40 research outputs found

    Effectiveness of life skills training on increasing self-esteem of high school students

    Get PDF
    AbstractObjective This study designed to investigate effectiveness of training life skills on adolescents’ students. Method This study is a pseudo-experimental study which accomplished on 160 students in Karaj city. Subjects of the study selected randomly from list of students in all of the schools of Karaj; then they divided randomly in two groups. Trained counsellors taught the life skills to students of the study group, and 80 reminder subjects assigned as control group. After educating the training program, subjects administered Cooper Smith self-esteem questionnaire (58-items version). Results Findings of the study indicated that life skills training lead to significant increase of self-esteem in study group in contrast to control group subjects. Conclusion Psycho education and mental health programs such as life skills training could cause to increase the necessary skills in students and decline school and educational problems

    Glutathione-S-transferase P promotes glycolysis in asthma in association with oxidation of pyruvate kinase M2

    Get PDF
    Background: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2. Methods: We used house dust mite (HDM) or interleukin-1β in C57BL6/NJ WT or mice that lack GSTP. Airway basal cells were stimulated with interleukin-1β and the selective GSTP inhibitor, TLK199. GSTP and PKM2 were evaluated in sputum samples of asthmatics and healthy controls and incorporated analysis of the U-BIOPRED severe asthma cohort database. Results: Ablation of Gstp decreased total S-glutathionylation and attenuated HDM-induced allergic airways disease and interleukin-1β-mediated inflammation. Gstp deletion or inhibition by TLK199 decreased the interleukin-1β-stimulated secretion of pro-inflammatory mediators and lactate by epithelial cells. 13C-glucose metabolomics showed decreased glycolysis flux at the pyruvate kinase step in response to TLK199. GSTP and PKM2 levels were increased in BAL of HDM-exposed mice as well as in sputum of asthmatics compared to controls. Sputum proteomics and transcriptomics revealed strong correlations between GSTP, PKM2, and the glycolysis pathway in asthma. Conclusions: GSTP contributes to the pathogenesis of allergic airways disease in association with enhanced glycolysis and oxidative disruption of PKM2. Our findings also suggest a PKM2-GSTP-glycolysis signature in asthma that is associated with severe disease

    Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase π

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp(–/–) mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF

    Differential Requirement for c-Jun N-terminal Kinase 1 in Lung Inflammation and Host Defense

    Get PDF
    The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 −/− mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 −/− mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 −/− mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia

    c-Jun N-Terminal Kinase 1 Is Required for the Development of Pulmonary Fibrosis

    No full text
    Collagen deposition is observed in a diverse set of pulmonary diseases, and the unraveling of the molecular signaling pathways that facilitate collagen deposition represents an ongoing area of investigation. The stress-activated protein kinase, c-Jun N-terminal kinase 1 (JNK1), is activated by a large variety of cellular stresses and environmental insults. Recent work from our laboratory demonstrated the critical role of JNK1 in epithelial to mesenchymal transition. The goal of the present study was to examine the involvement of JNK1 in subepithelial collagen deposition in mice subjected to models of allergic airways disease and interstitial pulmonary fibrosis. Activation of JNK was slightly enhanced in lungs from mice subjected to sensitization and challenge with ovalbumin (Ova), and predominant localization of phospho-JNK was observed in the bronchial epithelium. While mice lacking JNK1 (JNK1−/− mice) displayed enhanced lung inflammation and cytokine production compared with wild-type (WT) mice, JNK1−/− mice accumulated less subepithelial collagen deposition in response to antigen, and showed decreased expression of profibrotic genes compared with WT animals. Furthermore, transforming growth factor (TGF)-β1 content in the bronchoalveolar lavage was diminished in JNK1−/− mice compared with WT animals subjected to antigen. Finally, we demonstrated that mice lacking JNK1 were protected against TGF-β1 and bleomycin-induced pro-fibrotic gene expression and pulmonary fibrosis. Collectively, these findings demonstrate an important requirement for JNK1 in promoting collagen deposition in multiple models of fibrosis

    c-Jun N-Terminal Kinase 1 Promotes Transforming Growth Factor–β1–Induced Epithelial-to-Mesenchymal Transition via Control of Linker Phosphorylation and Transcriptional Activity of Smad3

    No full text
    Transforming growth factor (TGF)–β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1–induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1–induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1–induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor–1, fibronectin-1, high-mobility group A2, CArG box–binding factor–A, and fibroblast-specific protein–1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1–induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1–induced EMT

    TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner

    No full text
    Epithelial cells have been suggested as potential drivers of lung fibrosis, although the epithelial-dependent pathways that promote fibrogenesis remain unknown. Extracellular matrix is increasingly recognized as an environment that can drive cellular responses in various pulmonary diseases. In this study, we demonstrate that transforming growth factor-β1 (TGF-β1)-stimulated mouse tracheal basal (MTB) cells produce provisional matrix proteins in vitro, which initiate mesenchymal changes in subsequently freshly plated MTB cells via Rho kinase-and c-Jun NH2-terminal kinase (JNK1)-dependent processes. Repopulation of decellularized lung scaffolds, derived from mice with bleomycin-induced fibrosis or from patients with idiopathic pulmonary fibrosis, with wild-type MTB cells resulted in a loss of epithelial gene expression and augmentation of mesenchymal gene expression compared with cells seeded into decellularized normal lungs. In contrast, Jnk1-/- basal cells seeded into fibrotic lung scaffolds retained a robust epithelial expression profile, failed to induce mesenchymal genes, and differentiated into club cell secretory protein-expressing cells. This new paradigm wherein TGF-β1-induced extracellular matrix derived from MTB cells activates a JNK1-dependent mesenchymal program, which impedes subsequent normal epithelial cell homeostasis, provides a plausible scenario of chronic aberrant epithelial repair, thought to be critical in lung fibrogenesis. This study identifies JNK1 as a possible target for inhibition in settings wherein reepithelialization is desired

    Nuclear Factor κB, Airway Epithelium, and Asthma: Avenues for Redox Control

    No full text
    A wealth of recent studies points to the importance of airway epithelial cells in the orchestration of inflammatory responses in the allergic inflamed lung. Studies also point to a role of oxidative stress in the pathophysiology of chronic inflammatory diseases. This article provides a perspective on the significance of airway epithelial cells in allergic inflammation, and reviews the relevance of the transcription factor, nuclear factor κB, herein. We also provide the reader with a perspective on the role that oxidants can play in lung homeostasis, and address the concept of “redox biology.” In addition, we review recent evidence that highlights potential inhibitory roles of oxidants on nuclear factor κB activation and inflammation, and discuss recent assays that have become available to probe the functional roles of oxidants in lung biology

    Involvement of c-Jun N-Terminal Kinase in TNF-alpha-Driven Remodeling

    No full text
    Lung tissue remodeling in chronic obstructive pulmonary disease (COPD) is characterized by airway wall thickening and/or emphysema. Although the bronchial and alveolar compartments are functionally independent entities, we recently showed comparable alterations in matrix composition comprised of decreased elastin content and increased collagen and hyaluronan contents of alveolar and small airway walls. Out of several animal models tested, surfactant protein C (SPC)-TNF-alpha mice showed remodeling in alveolar and airway walls similar to what we observed in patients with COPD. Epithelial cells are able to undergo a phenotypic shift, gaining mesenchymal properties, a process in which c-Jun N-terminal kinase (JNK) signaling is involved. Therefore, we hypothesized that TNF-alpha induces JNK-dependent epithelial plasticity, which contributes to lung matrix remodeling. To this end, the ability of TNF-alpha to induce a phenotypic shift was assessed in A549, BEAS2B, and primary bronchial epithelial cells, and phenotypic markers were studied in SPC-TNF-alpha mice. Phenotypic markers of mesenchymal cells were elevated both in vitro and in vivo, as shown by the expression of vimentin, plasminogen activator inhibitor-1, collagen, and matrix metalloproteinases. Concurrently, the expression of the epithelial markers, E-cadherin and keratin 7 and 18, was attenuated. A pharmacological inhibitor of JNK attenuated this phenotypic shift in vitro, demonstrating involvement of JNK signaling in this process. Interestingly, activation of JNK signaling was also clearly present in lungs of SPC-TNF-alpha mice and patients with COPD. Together, these data show a role for TNF-alpha in the induction of a phenotypic shift in vitro, resulting in increased collagen production and the expression of elastin-degrading matrix metalloproteinases, and provide evidence for involvement of the TNF-alpha-JNK axis in extracellular matrix remodeling
    corecore