9 research outputs found
Detection of time reversibility in time series by ordinal patterns analysis
Time irreversibility is a common signature of nonlinear processes, and a
fundamental property of non-equilibrium systems driven by non-conservative
forces. A time series is said to be reversible if its statistical properties
are invariant regardless of the direction of time. Here we propose the Time
Reversibility from Ordinal Patterns method (TiROP) to assess time-reversibility
from an observed finite time series. TiROP captures the information of scalar
observations in time forward, as well as its time-reversed counterpart by means
of ordinal patterns. The method compares both underlying information contents
by quantifying its (dis)-similarity via Jensen-Shannon divergence. The
statistic is contrasted with a population of divergences coming from a set of
surrogates to unveil the temporal nature and its involved time scales. We
tested TiROP in different synthetic and real, linear and non linear time
series, juxtaposed with results from the classical Ramsey's time reversibility
test. Our results depict a novel, fast-computation, and fully data-driven
methodology to assess time-reversibility at different time scales with no
further assumptions over data. This approach adds new insights about the
current non-linear analysis techniques, and also could shed light on
determining new physiological biomarkers of high reliability and computational
efficiency.Comment: 8 pages, 5 figures, 1 tabl
Cattle transport network predicts endemic and epidemic foot-and-mouth disease risk on farms in Turkey
The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks
Coevolutionary Dynamics with Global Fields
We investigate the effects of external and autonomous global interaction fields on an adaptive network of social agents with an opinion formation dynamics based on a simple imitation rule. We study the competition between global fields and adaptive rewiring on the space of parameters of the system. The model represents an adaptive society subject to global mass media such as a directed opinion influence or feedback of endogenous cultural trends. We show that, in both situations, global mass media contribute to consensus and to prevent the fragmentation of the social network induced by the coevolutionary dynamics. We present a discussion of these results in the context of dynamical systems and opinion formation dynamics
Local risk perception enhances epidemic control.
As infectious disease outbreaks emerge, public health agencies often enact vaccination and social distancing measures to slow transmission. Their success depends on not only strategies and resources, but also public adherence. Individual willingness to take precautions may be influenced by global factors, such as news media, or local factors, such as infected family members or friends. Here, we compare three modes of epidemiological decision-making in the midst of a growing outbreak using network-based mathematical models that capture plausible heterogeneity in human contact patterns. Individuals decide whether to adopt a recommended intervention based on overall disease prevalence, the proportion of social contacts infected, or the number of social contacts infected. While all strategies can substantially mitigate transmission, vaccinating (or self isolating) based on the number of infected acquaintances is expected to prevent the most infections while requiring the fewest intervention resources. Unlike the other strategies, it has a substantial herd effect, providing indirect protection to a large fraction of the population
Spatial and Temporal Entropies in the Spanish Football League: A Network Science Perspective
We quantified the spatial and temporal entropy related to football teams and their players by means of a pass-based interaction. First, we calculated the spatial entropy associated to the positions of all passes made by a football team during a match, obtaining a spatial entropy ranking of Spanish teams during the 2017/2018 season. Second, we investigated how the player’s average location in the field is related to the amount of entropy of his passes. Next, we constructed the temporal passing networks of each team and computed the deviation of their network parameters along the match. For each network parameter, we obtained the permutation entropy and the statistical complexity of its temporal fluctuations. Finally, we investigated how the permutation entropy (and statistical complexity) of the network parameters was related to the total number of passes made by a football team. Our results show that (i) spatial entropy changes according to the position of players in the field, and (ii) the organization of passing networks change during a match and its evolution can be captured measuring the permutation entropy and statistical complexity of the network parameters, allowing to identify what parameters evolve more randomly
Disproportionate impacts of COVID-19 in a large US city.
COVID-19 has disproportionately impacted individuals depending on where they live and work, and based on their race, ethnicity, and socioeconomic status. Studies have documented catastrophic disparities at critical points throughout the pandemic, but have not yet systematically tracked their severity through time. Using anonymized hospitalization data from March 11, 2020 to June 1, 2021 and fine-grain infection hospitalization rates, we estimate the time-varying burden of COVID-19 by age group and ZIP code in Austin, Texas. During this 15-month period, we estimate an overall 23.7% (95% CrI: 22.5-24.8%) infection rate and 29.4% (95% CrI: 28.0-31.0%) case reporting rate. Individuals over 65 were less likely to be infected than younger age groups (11.2% [95% CrI: 10.3-12.0%] vs 25.1% [95% CrI: 23.7-26.4%]), but more likely to be hospitalized (1,965 per 100,000 vs 376 per 100,000) and have their infections reported (53% [95% CrI: 49-57%] vs 28% [95% CrI: 27-30%]). We used a mixed effect poisson regression model to estimate disparities in infection and reporting rates as a function of social vulnerability. We compared ZIP codes ranking in the 75th percentile of vulnerability to those in the 25th percentile, and found that the more vulnerable communities had 2.5 (95% CrI: 2.0-3.0) times the infection rate and only 70% (95% CrI: 60%-82%) the reporting rate compared to the less vulnerable communities. Inequality persisted but declined significantly over the 15-month study period. Our results suggest that further public health efforts are needed to mitigate local COVID-19 disparities and that the CDC's social vulnerability index may serve as a reliable predictor of risk on a local scale when surveillance data are limited