11 research outputs found
A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps
A two-dimensional computational fluid dynamics model is used to predict the
oscillatory flow through a tapered cylindrical tube section (jet pump) placed
in a larger outer tube. Due to the shape of the jet pump, there will exist an
asymmetry in the hydrodynamic end effects which will cause a time-averaged
pressure drop to occur that can be used to cancel Gedeon streaming in a
closed-loop thermoacoustic device. The performance of two jet pump geometries
with different taper angles is investigated. A specific time-domain impedance
boundary condition is implemented in order to simulate traveling acoustic wave
conditions. It is shown that by scaling the acoustic displacement amplitude to
the jet pump dimensions, similar minor losses are observed independent of the
jet pump geometry. Four different flow regimes are distinguished and the
observed flow phenomena are related to the jet pump performance. The simulated
jet pump performance is compared to an existing quasi-steady approximation
which is shown to only be valid for small displacement amplitudes compared to
the jet pump length.Comment: The following article has been accepted by the Journal of the
Acoustical Society of America. After it is published, it will be found at:
http://scitation.aip.org/JAS
Jet pumps for thermoacoustic applications: design guidelines based on a numerical parameter study
The oscillatory flow through tapered cylindrical tube sections (jet pumps) is
characterized by a numerical parameter study. The shape of a jet pump results
in asymmetric hydrodynamic end effects which cause a time-averaged pressure
drop to occur under oscillatory flow conditions. Hence, jet pumps are used as
streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional
axisymmetric computational fluid dynamics model is used to calculate the
performance of a large number of conical jet pump geometries in terms of
time-averaged pressure drop and acoustic power dissipation. The investigated
geometrical parameters include the jet pump length, taper angle, waist diameter
and waist curvature. In correspondence with previous work, four flow regimes
are observed which characterize the jet pump performance and dimensionless
parameters are introduced to scale the performance of the various jet pump
geometries. The simulation results are compared to an existing quasi-steady
theory and it is shown that this theory is only applicable in a small operation
region. Based on the scaling parameters, an optimum operation region is defined
and design guidelines are proposed which can be directly used for future jet
pump design.Comment: The following article has been accepted by the Journal of the
Acoustical Society of America. After it is published, it will be found at
http://scitation.aip.org/JAS
Calculation of thermoacoustic functions with computational fluid dynamics
Thermoacoustic functions are important parameters of one-dimensional codes used for the design of thermoacoustic engines. The thermal and viscous thermoacoustic functions allow the inclusion of three dimensional effects in one-dimensional codes. These functions are especially important in the regenerator of a thermoacoustic engine, where the thermoacoustic heat pumping occurs. Even though analytical solutions were derived for uniform pores, the thermoacoustic functions for complex geometries such as stacked screen or random fiber regenerators cannot be calculated analytically. In order to gain more insight into the geometry induced complex flow fields, the procedure of Udea, et al. (2009) to estimate the thermoacoustic functions was applied in computational fluid-dynamic simulations. By using two measurement locations outside of the regenerator and modeling the regenerator as an array of uniform pores it is possible to estimate the thermoacoustic functions for complex geometries. Furthermore, a correction method is proposed to quantify the entrance effects at the beginning and end of a regular pore. The simulations are first validated for a uniform cylindrical pore with the help of the analytical solution. Then the correction method is successfully applied to a cylindrical pore with the results closely matching the analytical solution
Computational fluid dynamics analysis of the oscillatory flow in a jet pump: the influence of taper angle
A two-dimensional CFD model for predicting the oscillating flow through a jet pump
is developed. Various taper angles are investigated and total minor loss coefficients are derived.
A good correspondence is achieved with experimental results from the literature. However, at
higher taper angles a dramatic decay in the jet pump pressure drop is observed, which serves
as a starting point for the improvement of jet pump design criteria for compact thermoacoustic
application
Exploring data provenance in handwritten text recognition infrastructure:Sharing and reusing ground truth data, referencing models, and acknowledging contributions. Starting the conversation on how we could get it done
This paper discusses best practices for sharing and reusing Ground Truth in Handwritten Text Recognition infrastructures, and ways to reference and acknowledge contributions to the creation and enrichment of data within these Machine Learning systems. We discuss how one can publish Ground Truth data in a repository and, subsequently, inform others. Furthermore, we suggest appropriate citation methods for HTR data, models, and contributions made by volunteers. Moreover, when using digitised sources (digital facsimiles), it becomes increasingly important to distinguish between the physical object and the digital collection. These topics all relate to the proper acknowledgement of labour put into digitising, transcribing, and sharing Ground Truth HTR data. This also points to broader issues surrounding the use of Machine Learning in archival and library contexts, and how the community should begin toacknowledge and record both contributions and data provenance
Flow Separation and Turbulence in Jet Pumps for Thermoacoustic Applications
The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be used to suppress acoustic streaming in closed-loop thermoacoustic devices. An experimental setup is used to measure the time-averaged pressure drop as well as the acoustic power dissipation across two different jet pump geometries in a pure oscillatory flow. The results are compared against published numerical results where flow separation was found to have a negative effect on the jet pump performance in a laminar flow. Using hot-wire anemometry the onset of flow separation is determined experimentally and the applicability of a critical Reynolds number for oscillatory pipe flows is confirmed for jet pump applications. It is found that turbulence can lead to a reduction of flow separation and hence, to an improvement in jet pump performance compared to laminar oscillatory flows
Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows
A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be implemented before the local minor losses have an influence on the jet pump performance is investigated. To validate the numerical results, they are compared with experimental results for one of the proposed jet pump designs