1,262 research outputs found

    "Better Safe than Sorry" - Individual Risk-free Pension Schemes in the European Union - Macroeconomic Benefits, the Mobile Working Citizen's Perspective and Why Nots

    Get PDF
    Variations between the diverse pension systems in the member states of the European Union hamper labour market mobility, across country borders but also within the countries of the European Union. From a macroeconomic perspective, and in the light of demographic pressure, this paper argues that allowing individual instead of collective pension building would greatly improve labour market flexibility and thus enhance the functioning of the monetary union. I argue that working citizens would benefit, for three reasons, from pension saving in a risk-free savings account. First, citizens would have a clear picture of the accumulation of their own pension savings throughout their working life. Second, they would pay hardly any extra costs and, third, once retired they would not be subject to the whims of government or other pension fund managers. This paper investigates the feasibility of individual pension building under various parameter settings by calculating the pension saved during a working life and the pension dis-saved after retirement. The findings show that there are no reasons why the European Union and individual member states should not allow individual risk-free pension savings accounts. This would have macroeconomic benefits and provide a solid pension provision that can enhance mobility, instead of engaging workers in different mandatory collective pension schemes that exist around in the European Union

    Sand in the wheels, or oiling the wheels, of international finance? : New Labour's appeal to a 'new Bretton Woods'

    Get PDF
    Tony Blair’s political instinct typically is to associate himself only with the future. As such, his explicit appeal to ‘the past’ in his references to New Labour’s desire to establish a “new Bretton Woods” is sufficient in itself to arouse some degree of analytical curiosity (see Blair 1998a). The fact that this appeal was made specifically in relation to Bretton Woods is even more interesting. The resonant image of the international economic context established by the original Bretton Woods agreements invokes a style and content of policy-making which Tony Blair typically dismisses as neither economically nor politically consistent with his preferred vision of the future (see Blair 2000c, 2001b)

    Derivatives and Credit Contagion in Interconnected Networks

    Get PDF
    The importance of adequately modeling credit risk has once again been highlighted in the recent financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic conditions, {\em but also} by directly triggering each other through contagion. Although credit default swaps have radically altered the dynamics of contagion for more than a decade, models quantifying their impact on systemic risk are still missing. Here, we examine contagion through credit default swaps in a stylized economic network of corporates and financial institutions. We analyse such a system using a stochastic setting, which allows us to exploit limit theorems to exactly solve the contagion dynamics for the entire system. Our analysis shows that, by creating additional contagion channels, CDS can actually lead to greater instability of the entire network in times of economic stress. This is particularly pronounced when CDS are used by banks to expand their loan books (arguing that CDS would offload the additional risks from their balance sheets). Thus, even with complete hedging through CDS, a significant loan book expansion can lead to considerably enhanced probabilities for the occurrence of very large losses and very high default rates in the system. Our approach adds a new dimension to research on credit contagion, and could feed into a rational underpinning of an improved regulatory framework for credit derivatives.Comment: 26 pages, 7 multi-part figure

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc

    Prediction of photoperiodic regulators from quantitative gene circuit models

    Get PDF
    Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement
    corecore