470 research outputs found
Raman-scattering study of the phonon dispersion in twisted bi-layer graphene
Bi-layer graphene with a twist angle \theta\ between the layers generates a
superlattice structure known as Moir\'{e} pattern. This superlattice provides a
\theta-dependent q wavevector that activates phonons in the interior of the
Brillouin zone. Here we show that this superlattice-induced Raman scattering
can be used to probe the phonon dispersion in twisted bi-layer graphene (tBLG).
The effect reported here is different from the broadly studied double-resonance
in graphene-related materials in many aspects, and despite the absence of
stacking order in tBLG, layer breathing vibrations (namely ZO' phonons) are
observed.Comment: 18 pages, 4 figures, research articl
Group Theory analysis of phonons in two-dimensional Transition Metal Dichalcogenides
Transition metal dichalcogenides (TMDCs) have emerged as a new two
dimensional materials field since the monolayer and few-layer limits show
different properties when compared to each other and to their respective bulk
materials. For example, in some cases when the bulk material is exfoliated down
to a monolayer, an indirect-to-direct band gap in the visible range is
observed. The number of layers ( even or odd) drives changes in space
group symmetry that are reflected in the optical properties. The understanding
of the space group symmetry as a function of the number of layers is therefore
important for the correct interpretation of the experimental data. Here we
present a thorough group theory study of the symmetry aspects relevant to
optical and spectroscopic analysis, for the most common polytypes of TMDCs,
i.e. , and , as a function of the number of layers. Real space
symmetries, the group of the wave vectors, the relevance of inversion symmetry,
irreducible representations of the vibrational modes, optical selection rules
and Raman tensors are discussed.Comment: 32 pages, 4 figure
Group theory analysis of electrons and phonons in N-layer graphene systems
In this work we study the symmetry properties of electrons and phonons in
graphene systems as function of the number of layers. We derive the selection
rules for the electron-radiation and for the electron-phonon interactions at
all points in the Brillouin zone. By considering these selection rules, we
address the double resonance Raman scattering process. The monolayer and
bilayer graphene in the presence of an applied electric field are also
discussed.Comment: 8 pages, 6 figure
Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes
Resonance Raman scattering is used to determine the radial breathing mode (RBM) frequency (ωRBM) dependence on tube diameter (dt) for single-wall carbon nanotubes (SWNTs). We establish experimentally the ωRBM=227.0/dt as the fundamental relation for pristine SWNTs. All the other RBM values found in the literature can be explained by an upshift in frequency due mostly to van der Waals interaction between SWNTs and environment
Fermionic current densities induced by magnetic flux in a conical space with a circular boundary
We investigate the vacuum expectation value of the fermionic current induced
by a magnetic flux in a (2+1)-dimensional conical spacetime in the presence of
a circular boundary. On the boundary the fermionic field obeys MIT bag boundary
condition. For irregular modes, a special case of boundary conditions at the
cone apex is considered, when the MIT bag boundary condition is imposed at a
finite radius, which is then taken to zero. We observe that the vacuum
expectation values for both charge density and azimuthal current are periodic
functions of the magnetic flux with the period equal to the flux quantum
whereas the expectation value of the radial component vanishes. For both
exterior and interior regions, the expectation values of the current are
decomposed into boundary-free and boundary-induced parts. For a massless field
the boundary-free part in the vacuum expectation value of the charge density
vanishes, whereas the presence of the boundary induces nonzero charge density.
Two integral representations are given for the boundary-free part in the case
of a massive fermionic field for arbitrary values of the opening angle of the
cone and magnetic flux. The behavior of the induced fermionic current is
investigated in various asymptotic regions of the parameters. At distances from
the boundary larger than the Compton wavelength of the fermion particle, the
vacuum expectation values decay exponentially with the decay rate depending on
the opening angle of the cone. We make a comparison with the results already
known from the literature for some particular cases.Comment: 34 pages, 6 figure
How does the substrate affect the Raman and excited state spectra of a carbon nanotube?
We study the optical properties of a single, semiconducting single-walled
carbon nanotube (CNT) that is partially suspended across a trench and partially
supported by a SiO2-substrate. By tuning the laser excitation energy across the
E33 excitonic resonance of the suspended CNT segment, the scattering
intensities of the principal Raman transitions, the radial breathing mode
(RBM), the G-mode and the D-mode show strong resonance enhancement of up to
three orders of magnitude. In the supported part of the CNT, despite a loss of
Raman scattering intensity of up to two orders of magnitude, we recover the E33
excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak
intensity ratio between G-band and D-band is highly sensitive to the presence
of the substrate and varies by one order of magnitude, demonstrating the much
higher defect density in the supported CNT segments. By comparing the E33
resonance spectra measured by Raman excitation spectroscopy and
photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we
observe that the peak energy in the PL excitation spectrum is red-shifted by 40
meV. This shift is associated with the energy difference between the localized
exciton dominating the PL excitation spectrum and the free exciton giving rise
to the Raman excitation spectrum. High-resolution Raman spectra reveal
substrate-induced symmetry breaking, as evidenced by the appearance of
additional peaks in the strongly broadened Raman G band. Laser-induced line
shifts of RBM and G band measured on the suspended CNT segment are both linear
as a function of the laser excitation power. Stokes/anti-Stokes measurements,
however, reveal an increase of the G phonon population while the RBM phonon
population is rather independent of the laser excitation power.Comment: Revised manuscript, 20 pages, 8 figure
Thermodynamics of the incommensurate state in Rb_2WO_4: on the Lifshitz point in A`A``BX_4 compounds
We consider the evolution of the phase transition from the parent hexagonal
phase to the orthorhombic phase that occurs in several
compounds of family as a function of the hcp lattice parameter
. For compounds of type with larger than the threshold
value 1.26 the direct first-order transition is characterized
by the large entropy jump . For compounds , ,
with this transition occurs via an intermediate
incommensurate phase. DSC measurements were performed in
to characterize the thermodynamics of the transitions. It
was found that both transitions are again of the first order with entropy jumps
0.3Rln2c/a ~ 1.26A'A''BX_{4}BX_{4}$ tetrahedra
orientation as a possible source of the transitions discontinuity.Comment: 13 pages,1 Postscript figure. Submitted as Brief Report to Phys. Rev.
B, this paper reports a new work in Theory and Experiment, directed to
Structural Phase Transition
Basal-plane Incommensurate Phases in HCP Structures
An Ising model with competing interaction is used to study the appearance of
incommensurate phases in the basal plane of an hexagonal closed-packed
structure. The calculated mean-field phase diagram reveals various
1q-incommensurate and lock-in phases. The results are applied to explain the
basal-plane incommensurate phase in some compounds of the A'A"BX_4 family, like
K_2MoO_4, K_2WO_4, Rb_2WO4 and to describe the sequence of high-temperature
phase transitions in other compounds of this family.Comment: 8 pages, RevTeX + 4 ps figure
- …