6 research outputs found

    Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects

    No full text
    Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of V̇o(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K(m) for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50–70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser(7) phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K(m) for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects

    Effect of insulin and contraction on glycogen synthase phosphorylation and kinetic properties in epitrochlearis muscles from lean and obese Zucker rats.

    No full text
    In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lower (higher K(m)) in muscles from obese rats. GS Ser(641) and Ser(645,649,653,657) phosphorylation was higher in insulin-stimulated muscles from obese rats, which agreed with lower GS activation. Contraction-mediated GS dephosphorylation of Ser(641), Ser(641+645), Ser(645,649,653,657), and Ser(7+10) was normal in muscles from obese Zucker rats, and GS fractional activity increased to similar levels in epitrochlearis muscles from lean and obese rats. GS affinity for UDP glucose was ~0.8, ~0.4, and ~0.1 mM with assay buffers containing 0, 0.17, and 12 mM glucose 6-phosphate, respectively. Contraction increased affinity for UDP-glucose (reduced K(m)) at a physiological concentration of glucose 6-phosphate (0.17 mM) to ~0.2 mM in muscles from both lean and obese rats. Interestingly, in the absence of glucose 6-phosphate in the assay buffer, contraction (and insulin) did not influence GS affinity for UDP-glucose, indicating that affinity is regulated by sensitivity for glucose 6-phosphate. In conclusion, contraction-mediated activation and dephosphorylation of GS were normal in muscles from obese Zucker rats, whereas insulin-mediated GS activation and dephosphorylation were impaired
    corecore