290 research outputs found

    Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization

    Get PDF
    It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 108 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. Here we present the first in situ structural characterization of a representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. This reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin film

    Imaging Oxygen Distribution in Marine Sediments. The Importance of Bioturbation and Sediment Heterogeneity

    Get PDF
    The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns:the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment–water interface

    Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat

    Get PDF
    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that were consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near-identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino-acid usage, indicating that hypersalinity enforces an overriding selective pressure on the mat community

    In Situ Oxygen Dynamics in Coral-Algal Interactions

    Get PDF
    Background: Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings: We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300-400 μM during the day. At night, the interface was hypoxic (~70 μM) in coral-turf interactions and close to anoxic (~2 μM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance: Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental conditions in studies on coral stress. © 2012 Wangpraseurt et al

    A study protocol of a randomised controlled trial incorporating a health economic analysis to investigate if additional allied health services for rehabilitation reduce length of stay without compromising patient outcomes

    Get PDF
    Background Reducing patient length of stay is a high priority for health service providers. Preliminary information suggests additional Saturday rehabilitation services could reduce the time a patient stays in hospital by three days. This large trial will examine if providing additional physiotherapy and occupational therapy services on a Saturday reduces health care costs, and improves the health of hospital inpatients receiving rehabilitation compared to the usual Monday to Friday service. We will also investigate the cost effectiveness and patient outcomes of such a service. Methods/Design A randomised controlled trial will evaluate the effect of providing additional physiotherapy and occupational therapy for rehabilitation. Seven hundred and twelve patients receiving inpatient rehabilitation at two metropolitan sites will be randomly allocated to the intervention group or control group. The control group will receive usual care physiotherapy and occupational therapy from Monday to Friday while the intervention group will receive the same amount of rehabilitation as the control group Monday to Friday plus a full physiotherapy and occupational therapy service on Saturday. The primary outcomes will be patient length of stay, quality of life (EuroQol questionnaire), the Functional Independence Measure (FIM), and health utilization and cost data. Secondary outcomes will assess clinical outcomes relevant to the goals of therapy: the 10 metre walk test, the timed up and go test, the Personal Care Participation Assessment and Resource Tool (PC PART), and the modified motor assessment scale. Blinded assessors will assess outcomes at admission and discharge, and follow up data on quality of life, function and health care costs will be collected at 6 and 12 months after discharge. Between group differences will be analysed with analysis of covariance using baseline measures as the covariate. A health economic analysis will be carried out alongside the randomised controlled trial. Discussion This paper outlines the study protocol for the first fully powered randomised controlled trial incorporating a health economic analysis to establish if additional Saturday allied health services for rehabilitation inpatients reduces length of stay without compromising discharge outcomes. If successful, this trial will have substantial health benefits for the patients and for organizations delivering rehabilitation services

    AMPK Regulates Circadian Rhythms in a Tissue- and Isoform-Specific Manner

    Get PDF
    AMP protein kinase (AMPK) plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo.THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD) cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT) activity, which converts nicotinamide (NAM) to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells.This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners

    Cerebral infarction in diabetes: Clinical pattern, stroke subtypes, and predictors of in-hospital mortality

    Get PDF
    BACKGROUND: To compare the characteristics and prognostic features of ischemic stroke in patients with diabetes and without diabetes, and to determine the independent predictors of in-hospital mortality in people with diabetes and ischemic stroke. METHODS: Diabetes was diagnosed in 393 (21.3%) of 1,840 consecutive patients with cerebral infarction included in a prospective stroke registry over a 12-year period. Demographic characteristics, cardiovascular risk factors, clinical events, stroke subtypes, neuroimaging data, and outcome in ischemic stroke patients with and without diabetes were compared. Predictors of in-hospital mortality in diabetic patients with ischemic stroke were assessed by multivariate analysis. RESULTS: People with diabetes compared to people without diabetes presented more frequently atherothrombotic stroke (41.2% vs 27%) and lacunar infarction (35.1% vs 23.9%) (P < 0.01). The in-hospital mortality in ischemic stroke patients with diabetes was 12.5% and 14.6% in those without (P = NS). Ischemic heart disease, hyperlipidemia, subacute onset, 85 years old or more, atherothrombotic and lacunar infarcts, and thalamic topography were independently associated with ischemic stroke in patients with diabetes, whereas predictors of in-hospital mortality included the patient's age, decreased consciousness, chronic nephropathy, congestive heart failure and atrial fibrillation CONCLUSION: Ischemic stroke in people with diabetes showed a different clinical pattern from those without diabetes, with atherothrombotic stroke and lacunar infarcts being more frequent. Clinical factors indicative of the severity of ischemic stroke available at onset have a predominant influence upon in-hospital mortality and may help clinicians to assess prognosis more accurately

    Cerebral infarction in diabetes: Clinical pattern, stroke subtypes, and predictors of in-hospital mortality

    Get PDF
    BACKGROUND: To compare the characteristics and prognostic features of ischemic stroke in patients with diabetes and without diabetes, and to determine the independent predictors of in-hospital mortality in people with diabetes and ischemic stroke. METHODS: Diabetes was diagnosed in 393 (21.3%) of 1,840 consecutive patients with cerebral infarction included in a prospective stroke registry over a 12-year period. Demographic characteristics, cardiovascular risk factors, clinical events, stroke subtypes, neuroimaging data, and outcome in ischemic stroke patients with and without diabetes were compared. Predictors of in-hospital mortality in diabetic patients with ischemic stroke were assessed by multivariate analysis. RESULTS: People with diabetes compared to people without diabetes presented more frequently atherothrombotic stroke (41.2% vs 27%) and lacunar infarction (35.1% vs 23.9%) (P < 0.01). The in-hospital mortality in ischemic stroke patients with diabetes was 12.5% and 14.6% in those without (P = NS). Ischemic heart disease, hyperlipidemia, subacute onset, 85 years old or more, atherothrombotic and lacunar infarcts, and thalamic topography were independently associated with ischemic stroke in patients with diabetes, whereas predictors of in-hospital mortality included the patient's age, decreased consciousness, chronic nephropathy, congestive heart failure and atrial fibrillation CONCLUSION: Ischemic stroke in people with diabetes showed a different clinical pattern from those without diabetes, with atherothrombotic stroke and lacunar infarcts being more frequent. Clinical factors indicative of the severity of ischemic stroke available at onset have a predominant influence upon in-hospital mortality and may help clinicians to assess prognosis more accurately

    Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    Get PDF
    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities
    corecore