4 research outputs found

    Effects of the K65R and K65R/M184V reverse transcriptase mutations in subtype C HIV on enzyme function and drug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the effects of mutations K65R and K65R plus M184V on enzymatic function and mechanisms of drug resistance in subtype C reverse transcriptase (RT).</p> <p>Methods</p> <p>Recombinant subtype C HIV-1 RTs containing K65R or K65R+M184V were purified from <it>Escherichia coli</it>. Enzyme activities and tenofovir (TFV) incorporation efficiency by wild-type (WT) and mutant RTs of both subtypes were determined in cell-free assays. Efficiency of (-) ssDNA synthesis and initiation by subtype C RTs was measured using gel-based assays with HIV-1 PBS RNA template and tRNA3<sup>Lys </sup>as primer. Single-cycle processivity was assayed under variable dNTP concentrations. Steady-state analysis was performed to measure the relative inhibitory capacity (ki/km) of TFV-disphosphate (TFV-DP). ATP-dependent excision and rescue of TFV-or ZDV-terminated DNA synthesis was monitored in time-course experiments.</p> <p>Results</p> <p>The efficiency of tRNA-primed (-)ssDNA synthesis by subtype C RTs was: WT > K65R > K65R+M184V RT. At low dNTP concentration, K65R RT exhibited lower activity in single-cycle processivity assays while the K65R+M184V mutant showed diminished processivity independent of dNTP concentration. ATP-mediated excision of TFV-or ZDV-terminated primer was decreased for K65R and for K65R+M184V RT compared to WT RT. K65R and K65R+M184V displayed 9.8-and 5-fold increases in IC50 for TFV-DP compared to WT RT. The Ki/Km of TFV was increased by 4.1-and 7.2-fold, respectively, for K65R and K65R+M184V compared to WT RT.</p> <p>Conclusion</p> <p>The diminished initiation efficiency of K65R-containing RTs at low dNTP concentrations have been confirmed for subtype C as well as subtype B. Despite decreased excision, this decreased binding/incorporation results in diminished susceptibility of K65R and K65R+M184 RT to TFV-DP.</p

    A Template-Dependent Dislocation Mechanism Potentiates K65R Reverse Transcriptase Mutation Development in Subtype C Variants of HIV-1

    Get PDF
    Numerous studies have suggested that the K65R reverse transcriptase (RT) mutation develops more readily in subtype C than subtype B HIV-1. We recently showed that this discrepancy lies partly in the subtype C template coding sequence that predisposes RT to pause at the site of K65R mutagenesis. However, the mechanism underlying this observation and the elevated rates of K65R development remained unknown. Here, we report that DNA synthesis performed with subtype C templates consistently produced more K65R-containing transcripts than subtype B templates, regardless of the subtype-origin of the RT enzymes employed. These findings confirm that the mechanism involved is template-specific and RT-independent. In addition, a pattern of DNA synthesis characteristic of site-specific primer/template slippage and dislocation was only observed with the subtype C sequence. Analysis of RNA secondary structure suggested that the latter was unlikely to impact on K65R development between subtypes and that Streisinger strand slippage during DNA synthesis at the homopolymeric nucleotide stretch of the subtype C K65 region might occur, resulting in misalignment of the primer and template. Consequently, slippage would lead to a deletion of the middle adenine of codon K65 and the production of a -1 frameshift mutation, which upon dislocation and realignment of the primer and template, would lead to development of the K65R mutation. These findings provide additional mechanistic evidence for the facilitated development of the K65R mutation in subtype C HIV-1
    corecore