30 research outputs found

    Reduction of friction in polymeric composites for artificial joint prostheses

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (leaves 128-135).Ultra-high molecular weight polyethylene has been used as a bearing material in artificial joints for more than thirty years. Despite this long period of use and the success which artificial implants have had, material failure and ultimately prosthetic failure still occurs as the result of mechanical wear of the bearing surface. Several wear mechanisms have been proposed as the main causes for failure; however, none is as dominant as the delamination wear of artificial knee prostheses. Delamination wear occurs mainly as the result of cyclic plastic deformation of the surface and subsurface layer which causes cracks to nucleate and propagate in the subsurface leading to the production of wear sheets. This research seeks a new alternative material to prevent the occurrence of delamination wear by the use of a fiber reinforced composite. The use of a fiber-reinforced composite having fibers oriented normal to the sliding direction is known to offer reduced plastic deformation resulting from the high stiffness of fibers and furthermore can inhibit crack nucleation and more importantly propagation since fibers are able to arrest the growth of cracks normal to the fiber axis. This new material has been called homo composite based on the fact that fiber and matrix are made from the same material, namely UHMWPE. This material has shown promising results in friction tests yielding coefficients of 0.05 in bovine lubricated sliding conditions. The optimization of material processing parameters with respect to friction and wear of the homocomposite is also presented.by Jorge Francisco Arinez.S.M

    The Changing Landscape of Energy Management in Manufacturing

    Get PDF
    The production and use of energy accounts for around 60% of global greenhouse gas (GHG) emissions, providing an intrinsic link between cause and effect. Considering that the manufacturing industry is responsible for roughly one-third of the global energy demand enforces the need to ensure that the manufacturing sector continually strives to reduce its reliance on energy and thus minimise GHG released into the atmosphere. Consequently, efficient management of energy consumption is of paramount importance for modern manufacturing businesses due to well-documented negative impacts regarding energy generation from fossil fuels and rapidly rising worldwide energy costs. This has resulted in a proliferation of research in this area which has considered improvements in energy consuming activities at the enterprise, facility, cell, machine and turret levels. However, there is now a need to go beyond incremental energy efficiency improvements and take more radical approaches to reduce energy consumption. It is argued that the largest energy reduction improvements can be achieved through better design of production systems or by adopting new business strategies that reduce the reliance of manufacturing businesses on resource consumption. This chapter initially provides a review of research in energy management (EM) at various manufacturing focus levels. The inappropriateness of current methods to cater for transformative and radical energy reduction approaches is discussed. In particular, limitations are found at the business strategy level since no technique exists to consider the input of these high level decisions on energy consumption. The main part of the chapter identifies areas of further opportunity in energy management research, and describes a method to facilitate further reductions in energy use and GHG production in manufacturing at the business strategy level

    Synthesis of Manufacturing and Facility Data for Sustainability Analysis

    Get PDF
    This paper discusses data synthesis of production and facility knowledge for sustainability analysis by applying the ISA 95 "Activity Models of Manufacturing Operations Management" (MOM) model. Presently, production and facility management are "silo" operations, which basically function independently of each other. This paper presents the addition of facility activities to the MOM model, in accordance with the needs for attaining a holistic view of sustainability analysis. Historically, production and facility data are represented in various forms, e.g., data bases, CAD, and spreadsheets, without a common unifying representation. This paper addresses the issue by introduced Core Manufacturing Simulation Data (CMSD) Standard. A case study of the data synthesis for a precision sand casting production facility is provided

    An equipment design approach for achieving manufacturing system design requirements

    No full text
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2000.Includes bibliographical references (p. 215-223).by Jorge Francisco Arinez.Ph.D

    Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems

    No full text
    Energy efficiency improvement and timely preventive maintenance (PM) are critical in manufacturing industry due to the rising energy cost, environmental concerns, and increasing requirements on system reliability. By strategically turning appropriate machines in down state, the corresponding energy consumption can be reduced, and at the meantime, the necessary PM works can be carried out to increase PM completion rate and reduce potential extra expense on PM during nonproduction shifts. However, there is usually a tradeoff between time dedicated to production and time available for energy saving and PM. In this paper, a systematic method is developed to identify opportunity windows (OWs) during which certain machines can be shut down to save energy and PM tasks can be performed while maintaining a desired production throughput. The method is based on stochastic serial production lines and real-time production data. A profit function is formulated to illustrate the tradeoff between energy cost savings and potential throughput loss. The profit function is used to justify the cost savings by utilizing the proposed OWs during production operation

    Conveyor-Less Urban-Car Assembly Factory with VaaC and Matrix System

    No full text
    The advent of autonomous electric vehicles (AEVs) will give drivers time and space instead of focusing on driving. Because of this, some drivers may want to personalize their car for their work, while others may want to customize their vehicle space to be more suitable for relaxation, which will accelerate the megatrend of mass individualization. However, the production of individualized cars faces several challenges. For example, since high-level automation during individualized car production is difficult, a stable skilled labor supply is essential, low-volume/high-variety production is required, and customer proximity or involvement is also important. These conditions can be satisfied by building a car assembly plant in an urban area. The problem is that urban areas are often spatially and environmentally constrained. However, it is be possible to overcome these urban limitations by implementing a conveyor-less micro factory. The objective of this study is to propose a new iterative matrix-system layout design method that can realize a conveyor-less urban car assembly factory with two technologies—VaaC (vehicle as a conveyor) and matrix assembly system. VaaC consists of three novel ideas: sensor skid, safety-sensor guidance system, and vehicle-powered devices, and this paper views each of them in detail. The proposed iterative matrix-system layout design method consists of four steps: (1) layout refinement, (2) simulation, (3) cost analysis, and (4) optimization check, and will examine how each step is performed through simple examples. The authors hope that this paper will arouse interest and provide elements to spur future research on the conveyor-less urban car assembly system

    Conveyor-Less Urban-Car Assembly Factory with VaaC and Matrix System

    No full text
    The advent of autonomous electric vehicles (AEVs) will give drivers time and space instead of focusing on driving. Because of this, some drivers may want to personalize their car for their work, while others may want to customize their vehicle space to be more suitable for relaxation, which will accelerate the megatrend of mass individualization. However, the production of individualized cars faces several challenges. For example, since high-level automation during individualized car production is difficult, a stable skilled labor supply is essential, low-volume/high-variety production is required, and customer proximity or involvement is also important. These conditions can be satisfied by building a car assembly plant in an urban area. The problem is that urban areas are often spatially and environmentally constrained. However, it is be possible to overcome these urban limitations by implementing a conveyor-less micro factory. The objective of this study is to propose a new iterative matrix-system layout design method that can realize a conveyor-less urban car assembly factory with two technologies—VaaC (vehicle as a conveyor) and matrix assembly system. VaaC consists of three novel ideas: sensor skid, safety-sensor guidance system, and vehicle-powered devices, and this paper views each of them in detail. The proposed iterative matrix-system layout design method consists of four steps: (1) layout refinement, (2) simulation, (3) cost analysis, and (4) optimization check, and will examine how each step is performed through simple examples. The authors hope that this paper will arouse interest and provide elements to spur future research on the conveyor-less urban car assembly system

    Data-Driven Analysis of Downtime Impacts in Parallel Production Systems

    No full text
    corecore