2,160 research outputs found
A Non-Stop S-Antigen Gene Mutation Is Associated With Late Onset Hereditary Retinal Degeneration in Dogs
Purpose: To identify the causative mutation of canine progressive retinal atrophy (PRA) segregating as an adult onset autosomal recessive disorder in the Basenji breed of dog.
Methods: Basenji dogs were ascertained for the PRA phenotype by clinical ophthalmoscopic examination. Blood samples from six affected cases and three nonaffected controls were collected, and DNA extraction was used for a genome-wide association study using the canine HD Illumina single nucleotide polymorphism (SNP) array and PLINK. Positional candidate genes identified within the peak association signal region were evaluated.
Results: The highest -Log10(P) value of 4.65 was obtained for 12 single nucleotide polymorphisms on three chromosomes. Homozygosity and linkage disequilibrium analyses favored one chromosome, CFA25, and screening of the S-antigen (SAG) gene identified a non-stop mutation (c.1216T\u3eC), which would result in the addition of 25 amino acids (p.*405Rext*25).
Conclusions: Identification of this non-stop SAG mutation in dogs affected with retinal degeneration establishes this canine disease as orthologous to Oguchi disease and SAG-associated retinitis pigmentosa in humans, and offers opportunities for genetic therapeutic intervention
Emissions of organic compounds from produced water ponds I: Characteristics and speciation
We measured fluxes of methane, a suite of non-methane hydrocarbons (C2–C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013–2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions.
Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6–C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes
Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck weakness
The aim of this study was to quantify the biomechanical features of the Sheffield Support Snood (SSS), a cervical orthosis specifically designed for patients with neck weakness. The orthosis is designed to be adaptable to a patient’s level of functional limitation using adjustable removable supports, which contribute support and restrict movement only in desired anatomical planes.
Methods: The SSS was evaluated along with two commercially available orthoses, the Vista and Headmaster. The orthoses were compared in a series of flexion, extension, axial-rotation and lateral bending movements. Characterisation was performed with twelve healthy subjects with and without the orthoses. Two Inertial-Magneto sensors, placed on forehead and sternum, were used to quantify the neck range of motion (ROM).
Findings: In its less rigid configuration, the SSS was effective in limiting movements only in the desired planes, preserving free movement in other planes, whereas the headmaster was only effective in limiting the flexion. The percentage of ROM achieved with the SSS in its rigid configuration is equivalent (P > 0.05, effect size < 0.4) to that achieved with the Vista, both in trials performed reaching the maximum amplitude (ROM reduction: 25%-34% vs 24%-47%) and at maximum speed (ROM reduction: 24%-29% vs 25%-43%).
Interpretation: The SSS is effectively adaptable to different tasks and in its rigid configuration offers a support comparable to the Vista, although it has a less bulky structure. The chosen method is suitable for the assessment of ROM movements while wearing neck orthoses and easily translatable in a clinical context
- …