14,358 research outputs found

    Slope Instability of the Earthen Levee in Boston, UK: Numerical Simulation and Sensor Data Analysis

    Full text link
    The paper presents a slope stability analysis for a heterogeneous earthen levee in Boston, UK, which is prone to occasional slope failures under tidal loads. Dynamic behavior of the levee under tidal fluctuations was simulated using a finite element model of variably saturated linear elastic perfectly plastic soil. Hydraulic conductivities of the soil strata have been calibrated according to piezometers readings, in order to obtain correct range of hydraulic loads in tidal mode. Finite element simulation was complemented with series of limit equilibrium analyses. Stability analyses have shown that slope failure occurs with the development of a circular slip surface located in the soft clay layer. Both models (FEM and LEM) confirm that the least stable hydraulic condition is the combination of the minimum river levels at low tide with the maximal saturation of soil layers. FEM results indicate that in winter time the levee is almost at its limit state, at the margin of safety (strength reduction factor values are 1.03 and 1.04 for the low-tide and high-tide phases, respectively); these results agree with real-life observations. The stability analyses have been implemented as real-time components integrated into the UrbanFlood early warning system for flood protection

    Quantum Nondemolition Measurement of a Kicked Qubit

    Full text link
    We propose a quantum nondemolition measurement using a kicked two-state system (qubit). By tuning the waiting time between kicks to be the qubit oscillation period, the kicking apparatus performs a nondemolition measurement. While dephasing is unavoidable, the nondemolition measurement can (1) slow relaxation of diagonal density matrix elements, (2) avoid detector back-action, and (3) allow for a large signal-to-noise ratio. Deviations from the ideal behavior are studied by allowing for detuning of the waiting time, as well as finite-time, noisy pulses. The scheme is illustrated with a double-dot qubit measured by a gate-pulsed quantum point contact.Comment: 7 pages, 1 figur

    Polyoxometalate multi-electron-transfer catalytic systems for water splitting

    Get PDF
    The viable production of solar fuels requires a visible-light-absorbing unit, a H2O (or CO2) reduction catalyst (WRC), and a water oxidation catalyst (WOC) that work in tandem to split water or reduce CO2 with H2O rapidly, selectively, and for long periods of time. Most catalysts and photosensitizers developed to date for these triadic systems are oxidatively, thermally, and/or hydrolytically unstable. Polyoxometalates (POMs) constitute a huge class of complexes with extensively tunable properties that are oxidatively, thermally, and (over wide and adjustable pH ranges) hydrolytically stable. POMs are some of the fastest and most stable WOCs to date under optimal conditions. This Microreview updates the very active POM WOC field; it reports the application of POMs as WRCs and initial self-assembling metal oxide semiconductor–photosensitizer–POM catalyst triad photoanodes. The complexities of investigating these POM systems, including but not limited to the study of POM-hydrated metal-ion–metal-oxide speciation processes, are outlined. The achievements and challenges in POM WOC, WRC, and triad research are outlined

    Electrochemical Energy Storage Subsystems Study, Volume 2

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values

    Scalar-tensor cosmology at the general relativity limit: Jordan vs Einstein frame

    Full text link
    We consider the correspondence between the Jordan frame and the Einstein frame descriptions of scalar-tensor theory of gravitation. We argue that since the redefinition of the scalar field is not differentiable at the limit of general relativity the correspondence between the two frames is lost at this limit. To clarify the situation we analyse the dynamics of the scalar field in different frames for two distinct scalar-tensor cosmologies with specific coupling functions and demonstrate that the corresponding scalar field phase portraits are not equivalent for regions containing the general relativity limit. Therefore the answer to the question whether general relativity is an attractor for the theory depends on the choice of the frame.Comment: 16 pages, 8 figures, version appeared in PR

    Electrochemical energy storage subsystems study, volume 1

    Get PDF
    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values

    Measuring Which-Path Information with Coupled Electronic Mach-Zehnder Interferometers

    Get PDF
    We theoretically investigate a generalized "which-path" measurement on an electronic Mach-Zehnder Interferometer (MZI) implemented via Coulomb coupling to a second electronic MZI acting as a detector. The use of contextual values, or generalized eigenvalues, enables the precise construction of which-path operator averages that are valid for any measurement strength from the available drain currents. The form of the contextual values provides direct physical insight about the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, and the proper background removal. We find that the detector interferometer must display maximal wave-like behavior to optimally measure the particle-like which-path information in the system interferometer, demonstrating wave-particle complementarity between the system and detector. We also find that the degree of quantum erasure that can be achieved by conditioning on a specific detector drain is directly related to the ambiguity of the measurement. Finally, conditioning the which-path averages on a particular system drain using the zero frequency cross-correlations produces conditioned averages that can become anomalously large due to quantum interference; the weak coupling limit of these conditioned averages can produce both weak values and detector-dependent semi-weak values.Comment: 17 pages, 12 figures, published version including appendi
    • …
    corecore