7 research outputs found
Origin, fate and dynamics of macrophages at central nervous system interfaces.
Perivascular, subdural meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It was assumed that they have a high turnover from blood-borne monocytes. However, using parabiosis and fate-mapping approaches in mice, we found that CNS macrophages arose from hematopoietic precursors during embryonic development and established stable populations, with the notable exception of choroid plexus macrophages, which had dual origins and a shorter life span. The generation of CNS macrophages relied on the transcription factor PU.1, whereas the MYB, BATF3 and NR4A1 transcription factors were not required
Stem-cell-derived human microglia transplanted in mouse brain to study human disease
Although genetics highlights the role of microglia in Alzheimer's disease, one-third of putative Alzheimer's disease risk genes lack adequate mouse orthologs. Here we successfully engraft human microglia derived from embryonic stem cells in the mouse brain. The cells recapitulate transcriptionally human primary microglia ex vivo and show expression of human-specific Alzheimer's disease risk genes. Oligomeric amyloid-β induces a divergent response in human versus mouse microglia. This model can be used to study the role of microglia in neurological diseases.</p