11 research outputs found

    PHIL: a Test Beam line at LAL

    No full text
    WEPP078International audienceIn the framework of a European contract*, LAL is in charge of the construction of one photo-injector for the drive beam linac of the CLIC Test Facility 3 [1] at CERN. This contract together with national funds allowed LAL to build a home test accelerator, PHIL, with the same photo-injector as for CTF3. The goal is to undergo experiments on the design and technology of advanced RF guns, to develop diagnostics and feedback techniques, a part of the beam time will be also shared with users of the electron beam. So far, the construction of this accelerator at LAL was very much delayed because of the legal obligation to upgrade the radiation shielding in agreement with the actual radiation safety thresholds. The required civil engineering is now finished and the installation of the components is under way. We will first present a design of the accelerator and few dynamic simulation results. Finally we will give an up to date status of the accelerator construction

    PHIL Accelerator at LAL - Diagnostic status

    No full text
    http://accelconf.web.cern.ch/AccelConf/BIW2010/papers/tupsm100.pdfInternational audienceThe "Photo-Injector at LAL" (PHIL : http://phil.lal.in2p3.fr/) is a new electron beam accelerator at LAL. This accelerator is dedicated to test and characterise electron photo-guns and high-frequency structures for future accelerator projects (like the next generation lepton colliders, CLIC, ILC). This machine has been designed to produce low energy (E<10 MeV), small emittance (epsilon < 10 pi.mm.mrad), high current (charge 2 nC/bunch) electrons bunch at low repetition frequency (frep<10Hz) [1]. The first beam has been obtained on the 4th of November 2009. This paper will describe the current status and the futures developments of the diagnostics devices on this machine

    Low Energy Beam Measurements Using PHIL Accelerator at LAL, Comparison with PARMELA Simulations

    No full text
    http://accelconf.web.cern.ch/AccelConf/PAC2011/papers/wep210.pdfInternational audiencePHIL ("PHo­to-In­jec­tor at LAL") is a new elec­tron beam ac­cel­er­a­tor at LAL. This ac­cel­er­a­tor is ded­i­cat­ed to test and char­ac­ter­ize elec­tron RF-guns and to de­liv­er elec­tron beam to users. This ma­chine has been de­signed to pro­duce and char­ac­terise low en­er­gy (E<10 MeV), small emit­tance (e<10 p.​mm.​mrad), high bril­liance elec­trons bunch at low rep­e­ti­tion fre­quen­cy (n<10Hz). The first beam has been ob­tained on the 4th of Novem­ber 2009. The cur­rent RF-gun test­ed on PHIL is the Al­phaX gun, a 2.5 cell S-band cav­i­ty de­signed by LAL for the plas­ma ac­cel­er­a­tor stud­ies per­formed at the Strath­clyde uni­ver­si­ty. This paper will pre­sent the first Al­phaX RF-gun char­ac­ter­i­za­tions per­formed at LAL on PHIL ac­cel­er­a­tor, and will show com­par­isons be­tween mea­sure­ments and PARMELA sim­u­la­tions

    Update on inner detector supports

    No full text

    ILD2 model and CAD

    No full text

    Machine Detector Interface at ILD

    No full text

    Physics and Technical Design for the Second High Energy Dispersive Section at PITZ.

    No full text
    International audienceResearch activities at the Photo Injector Test facility at DESY, Zeuthen site, (PITZ) aim to develop and optimize high brightness electron sources for Free Electron Lasers (FELs) like FLASH and the European XFEL. To demon- strate the XFEL operation, an electron bunch train contain- ing 3250 pulses of 1 nC charge at 10 Hz repetition rate is required. The spectrometers and related equipments for studying the longitudinal phase space for such long pulse trains do not yet exist at PITZ. Design and construction of a new high energy dispersive arm (HEDA2) is currently in progress. Besides the requirement to handle long electron bunch trains, the HEDA2 setup is designed to allow high resolution measurements of momentum distribution up to 40 MeV/c, a longitudinal phase space measurement with slice momentum spread down to 1 keV/c and transverse slice emittance measurements at off-crest booster phases. The status of the physics design and technical considera- tions of this dispersive section will be presented
    corecore