37 research outputs found

    Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats

    Get PDF
    Introduction. Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Material and methods. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. Results. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ mRNA. In adrenals of adult male and female rats expression levels of estrogen-related receptors ERRα and ERRβ were similar, and only in the ZF/R of female rats ERRγ expression levels were significantly higher than in males. We also analyzed expression profile of three isoforms of steroid 5α-reductase (Srd5a1, Srd5a2 and Srd5a3) and aromatase (Cyp19a1) and expression levels of all these genes were similar in ZG and ZF/R of male and female rats. Conclusions. In contrast to Affymetrix microarray data QPCR revealed higher expression levels of AR gene in adrenal glands of the male rats. In adrenals of both sexes expression levels of ERa, ERb, non-genomic GPR30 (GPER-1), ERR α and ERRβ receptors were comparable. The obtained results suggest that acute steroidogenic effect of estrogens on corticosteroid secretion may be mediated by non-genomic GPR30

    Mitochondrial sirtuins in the rat adrenal gland: location within the glands of males and females, hormonal and developmental regulation of gene expressions

    Get PDF
    Introduction. Sirtuins are NAD dependent class III histone deacetylases. In adrenal cortex mitochondria are able to transform — via nicotinamide nucleotide transhydrogenase (NNT) — NAD into NADPH, which is required for steroidogenesis. These findings suggest that sirtuins expressed in mitochondria, Sirt3, Sirt4 and Sirt5, may be associated with adrenal steroidogenesis. Therefore, the purpose of this study was to characterize the expression of mitochondrial sirtuins (Sirt3–5) in individual compartments of rat adrenal cortex, their developmental regulation and to demonstrate whether their expression is dependent on adrenocorticotrophic hormone (ACTH) and Nampt (nicotinamide phosphoribosyltransferase also known as visfatin/PBEF), the rate-limiting enzyme in the regulation of mammalian NAD synthesis. Material and methods. Studies were performed on rat adrenal glands or on primary culture of rat adrenocortical cells. Expression of mitochondrial sirtuins (Sirt3–5) was evaluated by Affymetrix microarray system or QPCR. The bulk of data were extracted from our earlier experiments which have been reanalyzed in regard to Sirt3–5 mRNAs expression levels and — if necessary — validated by QPCR. Results. Sirt3–5 were expressed throughout the rat adrenal, with the highest expression level of Sirt5. The level of expression of all sirtuins is higher in the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) than in the adrenal medulla. Sirt3 and Sirt5 expression levels were similar in adult male and female rats, while Sirt4 expression level was higher in females. As revealed by analysis of the available open database, no significant changes in Sirt3–5 expression levels in whole adrenal glands were observed up to week 104 of life of both male and female rats. Moreover, 60 min after intraperitoneal ACTH injection the expression level of Sirt3 in the en­tire gland was elevated while Sirt5 expression level lowered. On the other hand, chronic ACTH infusion (48 h) did not change expression of studied sirtuins. In cultured cells, ACTH greatly increased the expression levels of the Sirt4 and Sirt5. In cultured cells, Fk866 — a highly specific competitive inhibitor of Nampt — reduced expression level of Sirt5 only. In enucleation-induced regenerating rat adrenal, the expression levels of all studied sirtuins were significantly reduced in relation to the control group. Finally, in primary rat adrenal culture the FCS depletion elevates the Sirt3 and Sirt4 expression levels and downregulates Sirt5 expression. Conclusions. Sirt3–5 are expressed throughout the rat adrenal, with the highest expression levels in adrenal cortex. Performed experiments (ACTH stimulation, FCS depletion, regeneration) suggest that in the adrenal cortex, the mitochondrial Sirt5 is the primary mitochondrial sirtuin involved in regulating the biological activity of adrenocortical cells. Our results also suggest that normal levels of intracellular Nampt (iNampt) enzymatic activity are required to maintain normal (control) levels of Sirt5 mRNA in cultured cells

    Transcriptome Profile in Unilateral Adrenalectomy-Induced Compensatory Adrenal Growth in the Rat

    No full text
    Compensatory adrenal growth evoked by unilateral adrenalectomy (hemiadrenalectomy) constitutes one of the most frequently studied in vivo models of adrenocortical enlargement. This type of growth has been quite well characterized for its morphological, biochemical, and morphometric parameters. However, the molecular basis of compensatory adrenal growth is poorly understood. Therefore, the aim of this study was to investigate the rat adrenal transcriptome profile during the time of two previously described adrenocortical proliferation waves at 24 and 72 h after unilateral adrenalectomy. Surgical removal of the left adrenal or a sham operation was accomplished via the classic dorsal approach. As expected, the weight of the remaining right adrenal glands collected at 24 and 72 h after hemiadrenalectomy increased significantly. The transcriptome profile was identified by means of Affymetrix® Rat Gene 2.1 ST Array. The general profiles of differentially expressed genes were visualized as volcano plots and heatmaps. Detailed analyzes consisted of identifying significantly enriched gene ontological groups relevant to adrenal physiology, by means of DAVID and GOplot bioinformatics tools. The results of our studies showed that compensatory adrenal growth induced by unilateral adrenalectomy exerts a limited influence on the global transcriptome profile of the rat adrenal gland; nevertheless, it leads to significant changes in the expression of key genes regulating the circadian rhythm. Our results confirm also that regulation of compensatory adrenal growth is under complex and multifactorial control with a pivotal role of neural regulatory mechanisms and a supportive role of other components

    Transcriptome Profile in Unilateral Adrenalectomy-Induced Compensatory Adrenal Growth in the Rat

    No full text
    Compensatory adrenal growth evoked by unilateral adrenalectomy (hemiadrenalectomy) constitutes one of the most frequently studied in vivo models of adrenocortical enlargement. This type of growth has been quite well characterized for its morphological, biochemical, and morphometric parameters. However, the molecular basis of compensatory adrenal growth is poorly understood. Therefore, the aim of this study was to investigate the rat adrenal transcriptome profile during the time of two previously described adrenocortical proliferation waves at 24 and 72 h after unilateral adrenalectomy. Surgical removal of the left adrenal or a sham operation was accomplished via the classic dorsal approach. As expected, the weight of the remaining right adrenal glands collected at 24 and 72 h after hemiadrenalectomy increased significantly. The transcriptome profile was identified by means of Affymetrix® Rat Gene 2.1 ST Array. The general profiles of differentially expressed genes were visualized as volcano plots and heatmaps. Detailed analyzes consisted of identifying significantly enriched gene ontological groups relevant to adrenal physiology, by means of DAVID and GOplot bioinformatics tools. The results of our studies showed that compensatory adrenal growth induced by unilateral adrenalectomy exerts a limited influence on the global transcriptome profile of the rat adrenal gland; nevertheless, it leads to significant changes in the expression of key genes regulating the circadian rhythm. Our results confirm also that regulation of compensatory adrenal growth is under complex and multifactorial control with a pivotal role of neural regulatory mechanisms and a supportive role of other components

    Deregulated Transcriptome as a Platform for Adrenal Huntington’s Disease-Related Pathology

    No full text
    Huntington’s disease (HD) is a neurodegenerative disorder that affects mainly the central nervous system (CNS) by inducing progressive deterioration in both its structure and function. In recent years, there has been growing interest in the impact of HD on peripheral tissue function. Herein, we used the R6/2 mouse model of HD to investigate the influence of the disease on adrenal gland functioning. A transcriptomic analysis conducted using a well-established quantitative method, an Affymetrix array, revealed changes in gene expression in the R6/2 model compared to genetic background controls. For the first time, we identified disruptions in cholesterol and sterol metabolism, blood coagulation, and xenobiotic metabolism in HD adrenal glands. This study showed that the disrupted expression of these genes may contribute to the underlying mechanisms of Huntington’s disease. Our findings may contribute to developing a better understanding of Huntington’s disease progression and aid in the development of novel diagnostic or therapeutic approaches

    The Profile of MicroRNA Expression and Potential Role in the Regulation of Drug-Resistant Genes in Cisplatin- and Paclitaxel-Resistant Ovarian Cancer Cell Lines

    No full text
    Ovarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA. The main aim of our study was to detect changes in miRNA expression levels in two cisplatin (CIS) and two paclitaxel (PAC)—resistant variants of the A2780 drug-sensitive ovarian cancer cell line—by miRNA microarray. The next goal was to identify miRNAs responsible for the regulation of drug-resistance genes. We observed changes in the expression of 46 miRNA that may be related to drug resistance. The overexpression of miR-125b-5p, miR-99a-5p, miR-296-3p, and miR-887-3p and downregulation of miR-218-5p, miR-221-3p, and miR-222-3p was observed in both CIS-resistant cell lines. In both PAC-resistant cell lines, we observed the upregulation of miR-221-3p, miR-222-3p, and miR-4485, and decreased expression of miR-551b-3p, miR-551b-5p, and miR-218-5p. Analysis of targets suggest that expression of important drug-resistant genes like protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Semaphorin 3A (SEMA3A), or the ATP-binding cassette subfamily B member 1 gene (ABCB1) can be regulated by miRNA

    The Profile of MicroRNA Expression and Potential Role in the Regulation of Drug-Resistant Genes in Doxorubicin and Topotecan Resistant Ovarian Cancer Cell Lines

    No full text
    Epithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA. The main goal of our study was to detect differences in miRNA expression levels in two doxorubicin (DOX)- and two topotecan (TOP)-resistant variants of the A2780 drug-sensitive ovarian cancer cell line by miRNA microarray. The next aim was to recognize miRNAs as factors responsible for the regulation of drug-resistance genes. We observed altered expression of 28 miRNA that may be related to drug resistance. The upregulation of miR-125b-5p and miR-935 and downregulation of miR-218-5p was observed in both DOX-resistant cell lines. In both TOP-resistant cell lines, we noted the overexpression of miR-99a-5p, miR-100-5p, miR-125b-5p, and miR-125b-2-3p and decreased expression of miR-551b-3p, miR-551b-5p, and miR-383-5p. Analysis of the targets suggested that expression of important drug-resistant genes such as the collagen type I alpha 2 chain (COL1A2), protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Roundabout Guidance Receptor 2 (ROBO2), myristoylated alanine-rich C-kinase substrate (MARCK), and the ATP-binding cassette subfamily G member 2 (ABCG2) can be regulated by miRNA

    The Role of MicroRNAs in Early Chondrogenesis of Human Induced Pluripotent Stem Cells (hiPSCs)

    No full text
    Human induced pluripotent stem cells (hiPSCs) play an important role in research regarding regenerative medicine. Particularly, chondrocytes differentiated from hiPSCs seems to be a promising solution for patients suffering from osteoarthritis. We decided to perform chondrogenesis in a three-week monolayer culture. Based on transcriptome analysis, hiPSC-derived chondrocytes (ChiPS) demonstrate the gene expression profile of cells from early chondrogenesis. Chondrogenic progenitors obtained by our group are characterized by significantly high expression of Hox genes, strongly upregulated during limb formation and morphogenesis. There are scanty literature data concerning the role of microRNAs in early chondrogenesis, especially in chondrogenic differentiation of hiPSCs. The main aim of this study was to investigate the microRNA expression profile and to select microRNAs (miRNAs) taking part in early chondrogenesis. Our findings allowed for selection crucial miRNAs engaged in both diminishing pluripotency state and chondrogenic process (inter alia hsa-miR-525-5p, hsa-miR-520c-3p, hsa-miR-628-3p, hsa-miR-196b-star, hsa-miR-629-star, hsa-miR-517b, has-miR-187). These miRNAs regulate early chondrogenic genes such as: HOXD10, HOXA11, RARB, SEMA3C. These results were confirmed by RT-qPCR analysis. This work contributes to a better understanding of the role of miRNAs directly involved in chondrogenic differentiation of hiPSCs. These data may result in the establishment of a more efficient protocol of obtaining chondrocyte-like cells from hiPSCs
    corecore