32 research outputs found

    Performance of photosensors in a high-rate environment for gas Cherenkov detectors

    Full text link
    The solenoidal large intensity device (SoLID) at Jefferson Lab will push the boundaries of luminosity for a large-acceptance detector, which necessitates the use of a light-gas threshold Cherenkov counter for online event selection. Due to the high luminosity, the single-photon background rate in this counter can exceed 160 kHz/cm2^2 at the photosensors. Therefore, it is essential to validate the high-rate limits of the planned photosensors and readout electronics in order to mitigate the risk of failure. We report on the design and an early set of studies carried out using a small telescopic Cherenkov device in a high-rate environment up to 60 kHz/cm2^2, in Hall C at Jefferson Lab. Commercially available multi-anode photomultipliers (MaPMT) and low-cost large-area picosecond photodetectors (LAPPD) were tested using the JLab FADC250 modules for readout. The test beam results show that the MaPMT array and the internal stripline LAPPD can detect and identify single-electron and pair-production events in high-rate environments. Due to its higher quantum efficiency, the MaPMT array provided a better separation between the single-electron and the pair-production events compared to the internal stripline LAPPD. A GEANT4 simulation confirms the experimental performance of our telescopic device.Comment: 16 pages, 11 figure

    The Solenoidal Large Intensity Device (SoLID) for JLab 12 GeV

    Full text link
    The Solenoidal Large Intensity Device (SoLID) is a new experimental apparatus planned for Hall A at the Thomas Jefferson National Accelerator Facility (JLab). SoLID will combine large angular and momentum acceptance with the capability to handle very high data rates at high luminosity. With a slate of approved high-impact physics experiments, SoLID will push JLab to a new limit at the QCD intensity frontier that will exploit the full potential of its 12 GeV electron beam. In this paper, we present an overview of the rich physics program that can be realized with SoLID, which encompasses the tomography of the nucleon in 3-D momentum space from Semi-Inclusive Deep Inelastic Scattering (SIDIS), expanding the phase space in the search for new physics and novel hadronic effects in parity-violating DIS (PVDIS), a precision measurement of J/ψJ/\psi production at threshold that probes the gluon field and its contribution to the proton mass, tomography of the nucleon in combined coordinate and momentum space with deep exclusive reactions, and more. To meet the challenging requirements, the design of SoLID described here takes full advantage of recent progress in detector, data acquisition and computing technologies. In addition, we outline potential experiments beyond the currently approved program and discuss the physics that could be explored should upgrades of CEBAF become a reality in the future.Comment: This white paper for the SoLID program at Jefferson Lab was prepared in part as an input to the 2023 NSAC Long Range Planning exercise. To be submitted to J. Phys.

    Key4hep: Progress Report on Integrations

    Get PDF
    Detector studies for future experiments rely on advanced software tools to estimate performance and optimize their design and technology choices. The Key4hep project provides a flexible turnkey solution for the full experiment life-cycle based on established community tools such as ROOT, Geant4, DD4hep, Gaudi, podio and spack. Members of the CEPC, CLIC, EIC, FCC, and ILC communities have joined to develop this framework and have merged, or are in the progress of merging, their respective software environments into the Key4hep stack. These proceedings will give an overview over the recent progress in the Key4hep project: covering the developments towards adaptation of state-of-theart tools for simulation (DD4hep, Gaussino), track and calorimeter reconstruction (ACTS, CLUE), particle flow (PandoraPFA), analysis via RDataFrame, and visualization with Phoenix, as well as tools for testing and validation
    corecore