77 research outputs found
Increasing the Efficiency of Sparse Matrix-Matrix Multiplication with a 2.5D Algorithm and One-Sided MPI
Matrix-matrix multiplication is a basic operation in linear algebra and an
essential building block for a wide range of algorithms in various scientific
fields. Theory and implementation for the dense, square matrix case are
well-developed. If matrices are sparse, with application-specific sparsity
patterns, the optimal implementation remains an open question. Here, we explore
the performance of communication reducing 2.5D algorithms and one-sided MPI
communication in the context of linear scaling electronic structure theory. In
particular, we extend the DBCSR sparse matrix library, which is the basic
building block for linear scaling electronic structure theory and low scaling
correlated methods in CP2K. The library is specifically designed to efficiently
perform block-sparse matrix-matrix multiplication of matrices with a relatively
large occupation. Here, we compare the performance of the original
implementation based on Cannon's algorithm and MPI point-to-point
communication, with an implementation based on MPI one-sided communications
(RMA), in both a 2D and a 2.5D approach. The 2.5D approach trades memory and
auxiliary operations for reduced communication, which can lead to a speedup if
communication is dominant. The 2.5D algorithm is somewhat easier to implement
with one-sided communications. A detailed description of the implementation is
provided, also for non ideal processor topologies, since this is important for
actual applications. Given the importance of the precise sparsity pattern, and
even the actual matrix data, which decides the effective fill-in upon
multiplication, the tests are performed within the CP2K package with
application benchmarks. Results show a substantial boost in performance for the
RMA based 2.5D algorithm, up to 1.80x, which is observed to increase with the
number of involved processes in the parallelization.Comment: In Proceedings of PASC '17, Lugano, Switzerland, June 26-28, 2017, 10
pages, 4 figure
Speed Limits for AcidâBase Chemistry in Aqueous Solutions
Proton transfer reactions, including acidâbase recombination, are commonly considered to occur 'nearly instantaneously'. However, their actual time scales may stretch far into the microsecond range, as acidâbase reactions are diffusion controlled and the concentrations are
low near neutral pH. The interplay of competing bases in the pH relaxation is illustrated using a model acidâbase system consisting of o-nitrobenzaldehyde (oNBA) as a proton cage and acetate ions and hydroxyl ions as bases. The kinetically controlled behavior leads to highly
counterintuitive states, i.e. acetate ions are transiently protonated for hundreds of nanoseconds despite the presence of a much stronger base OHâ
Recommended from our members
Redox potentials and acidity constants from density functional theory based molecular dynamics.
CONSPECTUS: All-atom methods treat solute and solvent at the same level of electronic structure theory and statistical mechanics. All-atom computation of acidity constants (pKa) and redox potentials is still a challenge. In this Account, we review such a method combining density functional theory based molecular dynamics (DFTMD) and free energy perturbation (FEP) methods. The key computational tool is a FEP based method for reversible insertion of a proton or electron in a periodic DFTMD model system. The free energy of insertion (work function) is computed by thermodynamic integration of vertical energy gaps obtained from total energy differences. The problem of the loss of a physical reference for ionization energies under periodic boundary conditions is solved by comparing with the proton work function computed for the same supercell. The scheme acts as a computational hydrogen electrode, and the DFTMD redox energies can be directly compared with experimental redox potentials. Consistent with the closed shell nature of acid dissociation, pKa estimates computed using the proton insertion/removal scheme are found to be significantly more accurate than the redox potential calculations. This enables us to separate the DFT error from other sources of uncertainty such as finite system size and sampling errors. Drawing an analogy with charged defects in solids, we trace the error in redox potentials back to underestimation of the energy gap of the extended states of the solvent. Accordingly the improvement in the redox potential as calculated by hybrid functionals is explained as a consequence of the opening up of the bandgap by the Hartree-Fock exchange component in hybrids. Test calculations for a number of small inorganic and organic molecules show that the hybrid functional implementation of our method can reproduce acidity constants with an uncertainty of 1-2 pKa units (0.1 eV). The error for redox potentials is in the order of 0.2 V.J. C. thanks Emmanuel College at Cambridge for research fellowship. Dr. Aron Cohen
is ackowledged for helpful discussions about density functionals and the delocalization er-
ror. X.-D. L. thanks National Science Foundation of China (Nos. 41273074 and 41222015),
the Foundation for the Author of National Excellent Doctoral Dissertation of PR China
(No. 201228) and Newton International Fellow Program for nancial support. We thank
HECToR and UKCP consortium for computing time.This is the accepted manuscript. It will be embargoed until 12 months after publication by ACS. The final version is available from http://pubs.acs.org/doi/abs/10.1021/ar500268
Dynamics of the Bulk Hydrated Electron from ManyâBody WaveâFunction Theory
The structure of the hydrated electron is a matter of debate as it evades direct experimental observation owing to the short life time and low concentrations of the species. Herein, the first molecular dynamics simulation of the bulk hydrated electron based on correlated waveâfunction theory provides conclusive evidence in favor of a persistent tetrahedral cavity made up by four water molecules, and against the existence of stable nonâcavity structures. Such a cavity is formed within less than a picosecond after the addition of an excess electron to neat liquid water, with less regular cavities appearing as intermediates. The cavities are bound together by weak HâH bonds, the number of which correlates well with the number of coordinated water molecules, each type of cavity leaving a distinct spectroscopic signature. Simulations predict regions of negative spin density and a gyration radius that are both in agreement with experimental data
Accurate Hartree-Fock energy of extended systems using large Gaussian basis sets
Calculating highly accurate thermochemical properties of condensed matter via
wave function-based approaches (such as e.g. Hartree-Fock or hybrid
functionals) has recently attracted much interest. We here present two
strategies providing accurate Hartree-Fock energies for solid LiH in a large
Gaussian basis set and applying periodic boundary conditions. The total
energies were obtained using two different approaches, namely a supercell
evaluation of Hartree-Fock exchange using a truncated Coulomb operator and an
extrapolation toward the full-range Hartree-Fock limit of a Pad\'e fit to a
series of short-range screened Hartree-Fock calculations. These two techniques
agreed to significant precision. We also present the Hartree-Fock cohesive
energy of LiH (converged to within sub-meV) at the experimental equilibrium
volume as well as the Hartree-Fock equilibrium lattice constant and bulk
modulus.Comment: 7.5 pages, 2 figures, submitted to Phys. Rev. B; v2: typos removed,
References adde
Chasing charge localization and chemical reactivity following photoionization in liquid water
This is the published version, also available here: http://dx.doi.org/10.1063/1.3664746.The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within âŒ30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H2O+ + H2O â OH + H3O+. The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM/MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with âŒ40 fs time resolution and broadband spectral probing across the near-UV and visible are presented and direct comparisons with the theoretical simulations are made. Within the sensitivity and time resolution of the current measurement, a matching spectral signature is not detected. This result is used to place an upper limit on the absorption strength and/or lifetime of the localized H2O+ (aq) species
- âŠ