58 research outputs found

    Optimization of Massive Full-Dimensional MIMO for Positioning and Communication

    Full text link
    Massive Full-Dimensional multiple-input multiple-output (FD-MIMO) base stations (BSs) have the potential to bring multiplexing and coverage gains by means of three-dimensional (3D) beamforming. Key technical challenges for their deployment include the presence of limited-resolution front ends and the acquisition of channel state information (CSI) at the BSs. This paper investigates the use of FD-MIMO BSs to provide simultaneously high-rate data communication and mobile 3D positioning in the downlink. The analysis concentrates on the problem of beamforming design by accounting for imperfect CSI acquisition via Time Division Duplex (TDD)-based training and for the finite resolution of analog-to-digital converter (ADC) and digital-to-analog converter (DAC) at the BSs. Both \textit{unstructured beamforming} and a low-complexity \textit{Kronecker beamforming} solution are considered, where for the latter the beamforming vectors are decomposed into separate azimuth and elevation components. The proposed algorithmic solutions are based on Bussgang theorem, rank-relaxation and successive convex approximation (SCA) methods. Comprehensive numerical results demonstrate that the proposed schemes can effectively cater to both data communication and positioning services, providing only minor performance degradations as compared to the more conventional cases in which either function is implemented. Moreover, the proposed low-complexity Kronecker beamforming solutions are seen to guarantee a limited performance loss in the presence of a large number of BS antennas.Comment: 30 pages, 6 figure

    Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited local processing capabilities. The system aims at minimizing the total mobile energy consumption while satisfying quality of service requirements of the offloaded mobile application. Offloading is enabled by uplink and downlink communications between the mobile devices and the UAV that take place by means of frequency division duplex (FDD) via orthogonal or non-orthogonal multiple access (NOMA) schemes. The problem of jointly optimizing the bit allocation for uplink and downlink communication as well as for computing at the UAV, along with the cloudlet's trajectory under latency and UAV's energy budget constraints is formulated and addressed by leveraging successive convex approximation (SCA) strategies. Numerical results demonstrate the significant energy savings that can be accrued by means of the proposed joint optimization of bit allocation and cloudlet's trajectory as compared to local mobile execution as well as to partial optimization approaches that design only the bit allocation or the cloudlet's trajectory.Comment: 14 pages, 5 figures, 2 tables, IEEE Transactions on Vehicular Technolog

    Beamforming Design for Joint Localization and Data Transmission in Distributed Antenna System

    Full text link
    A distributed antenna system is studied whose goal is to provide data communication and positioning functionalities to Mobile Stations (MSs). Each MS receives data from a number of Base Stations (BSs), and uses the received signal not only to extract the information but also to determine its location. This is done based on Time of Arrival (TOA) or Time Difference of Arrival (TDOA) measurements, depending on the assumed synchronization conditions. The problem of minimizing the overall power expenditure of the BSs under data throughput and localization accuracy requirements is formulated with respect to the beamforming vectors used at the BSs. The analysis covers both frequency-flat and frequency-selective channels, and accounts also for robustness constraints in the presence of parameter uncertainty. The proposed algorithmic solutions are based on rank-relaxation and Difference-of-Convex (DC) programming.Comment: 15 pages, 9 figures, and 1 table, accepted in IEEE Transactions on Vehicular Technolog

    Learning How to Demodulate from Few Pilots via Meta-Learning

    Full text link
    Consider an Internet-of-Things (IoT) scenario in which devices transmit sporadically using short packets with few pilot symbols. Each device transmits over a fading channel and is characterized by an amplifier with a unique non-linear transfer function. The number of pilots is generally insufficient to obtain an accurate estimate of the end-to-end channel, which includes the effects of fading and of the amplifier's distortion. This paper proposes to tackle this problem using meta-learning. Accordingly, pilots from previous IoT transmissions are used as meta-training in order to learn a demodulator that is able to quickly adapt to new end-to-end channel conditions from few pilots. Numerical results validate the advantages of the approach as compared to training schemes that either do not leverage prior transmissions or apply a standard learning algorithm on previously received data
    • …
    corecore