102 research outputs found

    A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    Get PDF
    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

    Delayed Rupture of the Right Sinus of Valsalva into the Right Atrium after Percutaneous Coronary Intervention

    Get PDF
    Rupture of the sinus of Valsalva is an extremely rare complication after percutaneous coronary intervention (PCI). Because it usually results from the retrograde extension of a dissection of the right coronary artery and may quickly spread to involve the entire aorta, it can cause life-threatening complications such as aortic dissection. If the dissection remains localized, it can resolve spontaneously in the first month. Our patient experienced a delayed rupture of the right sinus of Valsalva into the right atrium at approximately 3 months after PCI

    Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive disorder

    Get PDF
    Background: Anterior cingulate cortex (ACC) abnormalities have been implicated consistently in the pathophysiology of obsessive-compulsive disorder (OCD), yet it remains unclear whether these abnormalities originated during early neurodevelopment. In this study, we examined the ACC sulcal/gyral patterns to investigate whether neurodevelopmental anomalies of the ACC were present in patients with OCD. We hypothesized that patients with OCD would show reduced cortical folding of the ACC compared with controls. Methods: We used magnetic resonance imaging (MRI) of 169 healthy volunteers and 110 patients with OCD to examine the paracingulate sulcus and cingulate sulcus. We assessed cortical folding patterns according to established classification criteria and constructed 3 categories of paracingulate sulcus morphology according to its presence and anteroposterior extent: "prominent," "present" and "absent." We classified the cingulate sulcus as "interrupted" or "continuous" according to the interruptions in its course. In addition, we evaluated ACC sulcal asymmetry based on interhemispheric comparisons of paracingulate sulcus morphology. Results: Analyses revealed that patients with OCD were significantly less likely than controls to show a well-developed left paracingulate sulcus: 50.0% of patients and 65.1% of controls showed a "prominent" or "present" paracingulate sulcus in the left hemisphere. However, there were no differences in regard to cingulate sulcus continuity, and patients also showed the same leftward ACC sulcal asymmetry as controls. Limitations: Our study was limited by the fact that we obtained the MRI scans from 2 different scanners, and we did not calculate cerebral fissurization as our study was restricted to 1 specific brain region. Moreover, patients and controls differed significantly in terms of sex ratio and IQ, although we controlled these variables as covariates. Conclusion: Our findings imply a subtle deviation in the early neurodevelopment of the ACC in patients with OCD, but the extent to which these anomalies contributed to the pathogenesis of OCD remains unclear. Further studies that link the ACC morphologic anomalies to the pathophysiology of OCD are recommended.This work was supported by Cognitive Neuroscience Program of the Korean Ministry of Science and Technology (M10644020003-08N4402-00310).Jung MH, 2009, PROG NEURO-PSYCHOPH, V33, P605, DOI 10.1016/j.pnpbp.2009.02.017Whittle S, 2009, PSYCHIAT RES-NEUROIM, V172, P68, DOI 10.1016/j.pscychresns.2008.06.005Gu BM, 2008, BRAIN, V131, P155, DOI 10.1093/brain/awm277Fornito A, 2007, ACTA PSYCHIAT SCAND, V116, P467, DOI 10.1111/j.1600-0447.2007.01069.xShin YW, 2007, HUM BRAIN MAPP, V28, P1128, DOI 10.1002/hbm.20338Huster RJ, 2007, NEUROIMAGE, V34, P888, DOI 10.1016/j.neuroimage.2006.10.023De Geus F, 2007, PSYCHIAT CLIN NEUROS, V61, P45, DOI 10.1111/j.1440-1819.2007.01609.xFornito A, 2006, SCHIZOPHR RES, V88, P192, DOI 10.1016/j.schres.2006.06.034Jang JH, 2006, AM J PSYCHIAT, V163, P1202Kim YY, 2006, BRAIN TOPOGR, V18, P201, DOI 10.1007/s10548-006-0269-2Klimkeit EI, 2006, CORTEX, V42, P113Valente AA, 2005, BIOL PSYCHIAT, V58, P479, DOI 10.1016/j.biopsych.2005.04.021Rosenberg DR, 2004, J AM ACAD CHILD PSY, V43, P1146, DOI 10.1097/01.chi.0000132812.44664.2dFornito A, 2004, CEREB CORTEX, V14, P424, DOI 10.1093/cercor/bhh004Shin YW, 2004, PSYCHIAT CLIN NEUROS, V58, P16Yucel M, 2003, BRIT J PSYCHIAT, V182, P518Yucel M, 2002, BIOL PSYCHIAT, V52, P15Lyoo IK, 2001, J CLIN PSYCHIAT, V62, P637Allman JM, 2001, ANN NY ACAD SCI, V935, P107Yucel M, 2001, CEREB CORTEX, V11, P17Bradshaw JL, 2000, BRAIN LANG, V73, P297Bush G, 2000, TRENDS COGN SCI, V4, P215Penalva J, 2000, BIOSENS BIOELECTRON, V15, P99Lohmann G, 1999, CEREB CORTEX, V9, P754Magnotta VA, 1999, CEREB CORTEX, V9, P151Tibbo P, 1999, J PSYCHIATR NEUROSCI, V24, P15Rosenberg DR, 1998, BIOL PSYCHIAT, V43, P623Purcell R, 1998, BIOL PSYCHIAT, V43, P348SAXENA S, 1998, BRIT J PSYCHIAT S, V35, P26FIRST MB, 1998, STRUCTURED CLIN INTESIEGEL S, 1998, NONPARAMETRIC STAT BRauch SL, 1997, J NEUROPSYCH CLIN N, V9, P568Bartley AJ, 1997, BRAIN, V120, P257VanEssen DC, 1997, NATURE, V385, P313Paus T, 1996, CEREB CORTEX, V6, P207FIRST MB, 1996, STRUCTURED CLIN INTEVOGT BA, 1995, J COMP NEUROL, V359, P490DEVINSKY O, 1995, BRAIN, V118, P279ARMSTRONG E, 1995, CEREB CORTEX, V5, P56PAULS DL, 1995, AM J PSYCHIAT, V152, P76KIM JS, 1995, KOREAN J CLIN PSYCHO, V14, P111*AM PSYCH ASS, 1994, DIAGN STAT MAN MENTBAXTER LR, 1992, ARCH GEN PSYCHIAT, V49, P681HUANG CC, 1991, BRAIN DEV-JPN, V13, P27WELKER W, 1990, CEREBRAL CORTEX B, V8, P3DIXON WJ, 1990, BMDP STAT SOFTWARE MHOLLANDER E, 1990, ARCH GEN PSYCHIAT, V47, P27CROW TJ, 1989, ARCH GEN PSYCHIAT, V46, P1145GOODMAN WK, 1989, ARCH GEN PSYCHIAT, V46, P1006GOODMAN WK, 1989, ARCH GEN PSYCHIAT, V46, P1012SWEDO SE, 1989, ARCH GEN PSYCHIAT, V46, P518RAKIC P, 1988, SCIENCE, V241, P170BEAR D, 1986, ARCH NEUROL-CHICAGO, V43, P598GESCHWIND N, 1985, ARCH NEUROL-CHICAGO, V42, P521FLORHENRY P, 1983, CEREBRAL BASIS PSYCH, P301CHI JG, 1977, ANN NEUROL, V1, P86ANNETT M, 1970, BRIT J PSYCHOL, V61, P303CRICHTONBROWNE J, 1879, BRAIN, V2, P42

    Type I Interferon Signaling Regulates Ly6Chi Monocytes and Neutrophils during Acute Viral Pneumonia in Mice

    Get PDF
    Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1โˆ’/โˆ’) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1โˆ’/โˆ’ mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1โˆ’/โˆ’ mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1โˆ’/โˆ’ and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1โˆ’/โˆ’ chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1โˆ’/โˆ’ mice. In contrast, WT mice that received Ifnar1โˆ’/โˆ’ BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung

    Introduction Face detection

    Full text link
    In recent years, face recognition has attracted much attention and its research has rapidly expanded by not only engineers but also neuroscientists, since it has many potential applications in computer visio

    Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches

    Full text link
    ยฉ 2019 American Chemical Society. Neural interfacing probes are located between the nervous system and the implanted electronic device in order to acquire information on the complex neuronal activity and to reconstruct impaired neural connectivity. Despite remarkable advancement in recent years, conventional neural interfacing is still unable to completely accomplish these goals, especially in long-term brain interfacing. The major limitation arises from physical and mechanical differences between neural interfacing probes and neural tissues that cause local immune responses and production of scar cells near the interface. Therefore, neural interfaces should ideally be extremely soft and have the physical scale of cells to mitigate the boundary between biotic and abiotic systems. Soft materials for neural interfaces have been intensively investigated to improve both interfacing and long-term signal transmission. The design and fabrication of micro and nanoscale devices have drastically decreased the stiffness of probes and enabled single-neuron measurement. In this Mini Review, we discuss materials and design approaches for developing soft high-resolution neural probes intended for long-term brain interfacing and outline existent challenges for achieving next-generation neural interfacing probes11sci
    • โ€ฆ
    corecore