38 research outputs found

    Renal Toxicity Evaluation and Comparison Between Visipaque (Iodixanol) and Hexabrix (Ioxaglate) in Patients With Renal Insufficiency Undergoing Coronary Angiography The RECOVER Study: A Randomized Controlled Trial

    Get PDF
    ObjectivesThis study sought to compare the nephrotoxicity of iodixanol and ioxaglate in patients with renal impairment undergoing coronary angiography.BackgroundIodixanol, a nonionic, dimeric, iso-osmolar contrast medium (IOCM), may be less nephrotoxic than low-osmolar contrast media (LOCM) in high-risk patients.MethodsIn a prospective, randomized trial in 300 adults with creatinine clearance (CrCl) ≤60 ml/min, patients received either iodixanol or ioxaglate and underwent coronary angiography with or without percutaneous coronary intervention. The primary end point was the incidence of contrast-induced nephropathy (CIN) (an increase in serum creatinine [SCr] ≥25% or ≥0.5 mg/dl [≥44.2 μmol/l]). The incidence of CIN in patients with severe renal impairment at baseline (CrCl <30 ml/min) or diabetes and in those receiving large doses (≥140 ml) of contrast medium was also determined.ResultsThe incidence of CIN was significantly lower with iodixanol (7.9%) than with ioxaglate (17.0%; p = 0.021), corresponding to an odds ratio (OR) of CIN of 0.415 (95% confidence interval [CI] 0.194 to 0.889) for iodixanol. The incidence of CIN was also significantly lower with iodixanol in patients with severe renal impairment (p = 0.023) or concomitant diabetes (p = 0.041), or in patients given ≥140 ml of contrast media (p = 0.038). Multivariate analysis identified use of ioxaglate (OR 2.65, 95% CI 1.11 to 6.33, p = 0.028), baseline SCr, mg/dl (OR 2.0, 95% CI 1.04 to 3.85, p = 0.038), and left ventricular ejection fraction, % (OR 0.97, 95% CI 0.94 to 0.99, p = 0.019) as independent risk factors for CIN.ConclusionsThe IOCM iodixanol was significantly less nephrotoxic than ioxaglate, an ionic, dimeric LOCM. (The RECOVER Trial; http://clinicaltrials.gov; NCT00247325

    Two-Year clinical outcomes after coronary bifurcation stenting in older patients from Korea and Italy

    Get PDF
    BackgroundOlder patients who treated by percutaneous coronary intervention (PCI) are at a higher risk of adverse cardiac outcomes. We sought to investigate the clinical impact of bifurcation PCI in older patients from Korea and Italy.MethodsWe selected 5,537 patients who underwent bifurcation PCI from the BIFURCAT (comBined Insights from the Unified RAIN and COBIS bifurcAtion regisTries) database. The primary outcome was a composite of target vessel myocardial infarction, clinically driven target lesion revascularization, and stent thrombosis at two years.ResultsIn patients aged ≥75 years, the mean age was 80.1 ± 4.0 years, 65.2% were men, and 33.7% had diabetes. Older patients more frequently presented with chronic kidney disease (CKD), severe coronary calcification, and left main coronary artery disease (LMCA). During a median follow-up of 2.1 years, older patients showed similar adverse clinical outcomes compared to younger patients (the primary outcome, 5.7% vs. 4.5%; p = 0.21). Advanced age was not an independent predictor of the primary outcome (p = 0.93) in overall patients. Both CKD and LMCA were independent predictors regardless of age group.ConclusionsOlder patients (≥75 years) showed similar clinical outcomes to those of younger patients after bifurcation PCI. Advanced age alone should not deter physicians from performing complex PCIs for bifurcation disease

    Biosensor-Assisted Adaptive Laboratory Evolution for Violacein Production

    No full text
    Violacein is a naturally occurring purple pigment, widely used in cosmetics and has potent antibacterial and antiviral properties. Violacein can be produced from tryptophan, consequently sufficient tryptophan biosynthesis is the key to violacein production. However, the complicated biosynthetic pathways and regulatory mechanisms often make the tryptophan overproduction challenging in Escherichia coli. In this study, we used the adaptive laboratory evolution (ALE) strategy to improve violacein production using galactose as a carbon source. During the ALE, a tryptophan-responsive biosensor was employed to provide selection pressure to enrich tryptophan-producing cells. From the biosensor-assisted ALE, we obtained an evolved population of cells capable of effectively catabolizing galactose to tryptophan and subsequently used the population to obtain the best violacein producer. In addition, whole-genome sequencing of the evolved strain identified point mutations beneficial to the overproduction. Overall, we demonstrated that the biosensor-assisted ALE strategy could be used to rapidly and selectively evolve the producers to yield high violacein production
    corecore