14,869 research outputs found
Generalizing Optical Geometry
We show that by employing the standard projected curvature as a measure of
spatial curvature, we can make a certain generalization of optical geometry
(Abramowicz and Lasota 1997, Class. Quantum Grav. 14 (1997) A23). This
generalization applies to any spacetime that admits a hypersurface orthogonal
shearfree congruence of worldlines. This is a somewhat larger class of
spacetimes than the conformally static spacetimes assumed in standard optical
geometry. In the generalized optical geometry, which in the generic case is
time dependent, photons move with unit speed along spatial geodesics and the
sideways force experienced by a particle following a spatially straight line is
independent of the velocity. Also gyroscopes moving along spatial geodesics do
not precess (relative to the forward direction). Gyroscopes that follow a
curved spatial trajectory precess according to a very simple law of
three-rotation. We also present an inertial force formalism in coordinate
representation for this generalization. Furthermore, we show that by employing
a new sense of spatial curvature (Jonsson, Class. Quantum Grav. 23 (2006) 1)
closely connected to Fermat's principle, we can make a more extensive
generalization of optical geometry that applies to arbitrary spacetimes. In
general this optical geometry will be time dependent, but still geodesic
photons move with unit speed and follow lines that are spatially straight in
the new sense. Also, the sideways experienced (comoving) force on a test
particle following a line that is straight in the new sense will be independent
of the velocity.Comment: 19 pages, 1 figure. A more general analysis is presented than in the
former version. See also the companion papers arXiv:0708.2493,
arXiv:0708.2533 and arXiv:0708.253
Degree growth of meromorphic surface maps
We study the degree growth of iterates of meromorphic selfmaps of compact
Kahler surfaces. Using cohomology classes on the Riemann-Zariski space we show
that the degrees grow similarly to those of mappings that are algebraically
stable on some birational model.Comment: 17 pages, final version, to appear in Duke Math Journa
Singular semipositive metrics in non-Archimedean geometry
Let X be a smooth projective Berkovich space over a complete discrete
valuation field K of residue characteristic zero, endowed with an ample line
bundle L. We introduce a general notion of (possibly singular) semipositive (or
plurisubharmonic) metrics on L, and prove the analogue of the following two
basic results in the complex case: the set of semipositive metrics is compact
modulo constants, and each semipositive metric is a decreasing limit of smooth
semipositive ones. In particular, for continuous metrics our definition agrees
with the one by S.-W. Zhang. The proofs use multiplier ideals and the
construction of suitable models of X over the valuation ring of K, using
toroidal techniques.Comment: 49 pages, 1 figure. Accepted in the Journal of Algebraic Geometr
The inverse conjunction fallacy
If people believe that some property is true of all members of a class such as sofas, then they should also believe that the same property is true of all members of a conjunctively defined subset of that class such as uncomfortable handmade sofas. A series of experiments demonstrated a failure to observe this constraint, leading to what is termed the inverse conjunction fallacy. Not only did people often express a belief in the more general statement but not in the more specific, but also when they accepted both beliefs, they were inclined to give greater confidence to the more general. It is argued that this effect underlies a number of other demonstrations of fallacious reasoning, particularly in category-based induction. Alternative accounts of the phenomenon are evaluated, and it is concluded that the effect is best interpreted in terms of intensional reasoning [Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychological Review, 90, 293–315.]
Radiant Emission Characteristics of Diffuse Conical Cavities
Radiant-energy emission of diffuse conical cavitie
Thermal Radiation Absorption in Rectangular-Groove Cavities
Thermal radiation absorption in rectangular-groove cavitie
Inertial forces and the foundations of optical geometry
Assuming a general timelike congruence of worldlines as a reference frame, we
derive a covariant general formalism of inertial forces in General Relativity.
Inspired by the works of Abramowicz et. al. (see e.g. Abramowicz and Lasota,
Class. Quantum Grav. 14 (1997) A23), we also study conformal rescalings of
spacetime and investigate how these affect the inertial force formalism. While
many ways of describing spatial curvature of a trajectory has been discussed in
papers prior to this, one particular prescription (which differs from the
standard projected curvature when the reference is shearing) appears novel. For
the particular case of a hypersurface-forming congruence, using a suitable
rescaling of spacetime, we show that a geodesic photon is always following a
line that is spatially straight with respect to the new curvature measure. This
fact is intimately connected to Fermat's principle, and allows for a certain
generalization of the optical geometry as will be further pursued in a
companion paper (Jonsson and Westman, Class. Quantum Grav. 23 (2006) 61). For
the particular case when the shear-tensor vanishes, we present the inertial
force equation in three-dimensional form (using the bold face vector notation),
and note how similar it is to its Newtonian counterpart. From the spatial
curvature measures that we introduce, we derive corresponding covariant
differentiations of a vector defined along a spacetime trajectory. This allows
us to connect the formalism of this paper to that of Jantzen et. al. (see e.g.
Bini et. al., Int. J. Mod. Phys. D 6 (1997) 143).Comment: 42 pages, 7 figure
- …