2 research outputs found

    The Accelerated Acceleration of the Universe

    Full text link
    We present a simple mechanism which can mimic dark energy with an equation of state w < -1 as deduced from the supernova data. We imagine that the universe is accelerating under the control of a quintessence field, which is moving up a very gently sloping potential. As a result, the potential energy and hence the acceleration increases at lower redshifts. Fitting this behavior with a dark energy model with constant w would require w<-1. In fact we find that the choice of parameters which improves the fit to the SNe mimics w = -1.4 at low redshifts. Running up the potential in fact provides the best fit to the SN data for a generic quintessence model. However, unlike models with phantoms, our model does not have negative energies or negative norm states. Future searches for supernovae at low redshifts 0.1 < z < 0.5 and at high redshifts z>1 may be a useful probe of our proposal.Comment: 14 pages, 5 figure

    Cosmological constraints on the dark energy equation of state and its evolution

    Full text link
    We have calculated constraints on the evolution of the equation of state of the dark energy, w(z), from a joint analysis of data from the cosmic microwave background, large scale structure and type-Ia supernovae. In order to probe the time-evolution of w we propose a new, simple parametrization of w, which has the advantage of being transparent and simple to extend to more parameters as better data becomes available. Furthermore it is well behaved in all asymptotic limits. Based on this parametrization we find that w(z=0)=-1.43^{+0.16}_{-0.38} and dw/dz(z=0) = 1.0^{+1.0}_{-0.8}. For a constant w we find that -1.34 < w < -0.79 at 95% C.L. Thus, allowing for a time-varying w shifts the best fit present day value of w down. However, even though models with time variation in w yield a lower chi^2 than pure LambdaCDM models, they do not have a better goodness-of-fit. Rank correlation tests on SNI-a data also do not show any need for a time-varying w.Comment: 19 pages, 11 figures, JCAP format, typos corrected, references update
    corecore