278 research outputs found
Analisis Efektivitas Program Promosi IMOVSES Terhadap Tingkat Penggunaan Produk Microsoft Berlisensi Pada Sivitas IPB
Institut Pertanian Bogor (IPB) Microsoft Open Value Subcscription for Education Solution atau IMOVSES merupakan program promosi Microsoft yang dikelola oleh IPB dalam rangka memperkenalkan sekaligus meningkatkan penggunaan produk Microsoft berlisensi kepada sivitas akademika IPB dengan cara menawarkan produk Microsoft berlisensi dengan potongan harga yang signifikan. Tujuan penelitian ini adalah untuk mengidentifikasi karakteristik sivitas IPB terkait keputusan penggunaan software berlisensi, menganalisis respon sivitas IPB terhadap program promosi IMOVSES, serta menganalisis efektivitas penganggaran biaya program promosi IMOVSES. Metode yang digunakan untuk mengidentifikasi karakteristik sivitas IPB adalah chi square, untuk menganalisis respon sivitas digunakan EPIC Model dan Direct Rating Method, sedangkan untuk menganalisis efektivitas penganggaran promosi digunakan analisis regresi. EPIC Rate yang dihasilkan adalah sebesar 3,15, yang menunjukkan bahwa promosi berada pada rentang cukup efektif. Nilai direct rating (ǧ) diperoleh sebesar 64,14, yang menunjukkan bahwa promosi masuk dalam kategori baik. Persamaan regresi yang diperoleh adalah “Jumlah sivitas = 27,2+0,000027 Biaya promosi” yang menunjukan bahwa apabila biaya promosi ditambah sebesar Rp100.000,- akan menambah jumlah sivitas sebanyak 3 orang. Dibutuhkan setidaknya biaya sebesar Rp127.300.000,- untuk menjadikan program promosi efektif secara penjualan
NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB: evidence for a novel inducible autoregulatory feedback pathway
The transcription factor NF-κB regulates genes involved in inflammatory and immune responses, tumorigenesis, and apoptosis. In contrast to the pleiotropic stimuli that lead to its positive regulation, the known signaling mechanisms that underlie the negative regulation of NF-κB are very few. Recent studies have identified the tumor suppressor CYLD, loss of which causes a benign human syndrome called cylindromatosis, as a key negative regulator for NF-κB signaling by deubiquitinating tumor necrosis factor (TNF) receptor-associated factor (TRAF) 2, TRAF6, and NEMO (NF-κB essential modulator, also known as IκB kinase γ). However, how CYLD is regulated remains unknown. The present study revealed a novel autoregulatory feedback pathway through which activation of NF-κB by TNF-α and bacterium nontypeable Haemophilus influenzae (NTHi) induces CYLD that in turn leads to the negative regulation of NF-κB signaling. In addition, TRAF2 and TRAF6 appear to be differentially involved in NF-κB-dependent induction of CYLD by TNF-α and NTHi. These findings provide novel insights into the autoregulation of NF-κB activation
Hypoxia activates IKK-NF-κB and the immune response in <em>Drosophila melanogaster</em>
Hypoxia, or low oxygen availability, is an important physiological and pathological stimulus for multicellular organisms. Molecularly, hypoxia activates a transcriptional programme directed at restoration of oxygen homoeostasis and cellular survival. In mammalian cells, hypoxia not only activates the HIF (hypoxia-inducible factor) family, but also additional transcription factors such as NF-κB (nuclear factor κB). Here we show that hypoxia activates the IKK–NF-κB [IκB (inhibitor of nuclear factor κB)–NF-κB] pathway and the immune response in Drosophila melanogaster. We show that NF-κB activation is required for organism survival in hypoxia. Finally, we identify a role for the tumour suppressor Cyld, as a negative regulator of NF-κB in response to hypoxia in Drosophila. The results indicate that hypoxia activation of the IKK–NF-κB pathway and the immune response is an important and evolutionary conserved response
Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling
Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio
Dramatic Dietary Shift Maintains Sequestered Toxins in Chemically Defended Snakes
Unlike other snakes, most species of Rhabdophis possess glands in their dorsal skin, sometimes limited to the neck, known as nucho-dorsal and nuchal glands, respectively. Those glands contain powerful cardiotonic steroids known as bufadienolides, which can be deployed as a defense against predators. Bufadienolides otherwise occur only in toads (Bufonidae) and some fireflies (Lampyrinae), which are known or believed to synthesize the toxins. The ancestral diet of Rhabdophis consists of anuran amphibians, and we have shown previously that the bufadienolide toxins of frog-eating species are sequestered from toads consumed as prey. However, one derived clade, the Rhabdophis nuchalis Group, has shifted its primary diet from frogs to earthworms. Here we confirm that the worm-eating snakes possess bufadienolides in their nucho-dorsal glands, although the worms themselves lack such toxins. In addition, we show that the bufadienolides of R. nuchalis Group species are obtained primarily from fireflies. Although few snakes feed on insects, we document through feeding experiments, chemosensory preference tests, and gut contents that lampyrine firefly larvae are regularly consumed by these snakes. Furthermore, members of the R. nuchalis Group contain compounds that resemble the distinctive bufadienolides of fireflies, but not those of toads, in stereochemistry, glycosylation, acetylation, and molecular weight. Thus, the evolutionary shift in primary prey among members of the R. nuchalis Group has been accompanied by a dramatic shift in the source of the species’ sequestered defensive toxins
Epithelioid sarcoma with muscle metastasis detected by positron emission tomography
<p>Abstract</p> <p>Background</p> <p>Epithelioid sarcoma is an uncommon high-grade sarcoma, mostly involving the extremities.</p> <p>Case presentation</p> <p>A 33-year-old man was referred to our institute with a diagnosis of Volkmann's contracture with the symptom of flexion contracture of the fingers associated with swelling in his left forearm. Magnetic resonance imaging (MRI) showed abnormal signal intensity, comprising iso-signal intensity on T1- and high-signal intensity on T2-weighted images surrounding the flexor tendons in the forearm. Diagnosis of epithelioid sarcoma was made by open biopsy, and amputation at the upper arm was then undertaken. [<sup>18</sup>F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) detected multiple lesions with an increased uptake in the right neck, the bilateral upper arms and the right thigh, as well as in the left axillary lymph nodes, with maximum standardized uptake value (SUVmax) ranging from 2.0 to 5.5 g/ml. Magnetic resonance imaging confirmed that there was a lesion within the right thigh muscle which was suggestive of metastasis, even though the lesion was occult clinically.</p> <p>Conclusion</p> <p>Increased uptake on FDG-PET might be representative of epithelioid sarcoma, and for this reason FDG-PET may be useful for detecting metastasis. Muscle metastasis is not well documented in epithelioid sarcoma. Accordingly, the frequency of muscle metastasis, including occult metastasis, needs to be further analyzed.</p
Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B
<p>Abstract</p> <p>Background</p> <p>Nontypeable <it>Haemophilus influenzae </it>(NTHi) is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary disease, but its molecular interaction with human lung epithelial cells remains unclear. Herein, we tested that the hypothesis that NTHi induces the expression of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) via activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B in pulmonary alveolar epithelial cells.</p> <p>Methods</p> <p>Human alveolar epithelial A549 cells were infected with different concentrations of NTHi. The phosphorylation of p38 MAPK was detected by Western blot analysis, the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay (EMSA), and the expressions of COX-1 and 2 mRNA and PGE2 protein were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. The roles of Toll-like receptor (TLR) 2 and TLR4, well known NTHi recognizing receptor in lung epithelial cell and gram-negative bacteria receptor, respectively, on the NTHi-induced COX-2 expression were investigated in the HEK293 cells overexpressing TLR2 and TLR4 <it>in vitro </it>and in the mouse model of NTHi-induced pneumonia by using TLR2 and TLR4 knock-out mice <it>in vivo</it>. In addition, the role of p38 MAPK and NF-kappa B on the NTHi-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors.</p> <p>Results</p> <p>NTHi induced COX-2 mRNA expression in a dose-dependent manner, but not COX-1 mRNA expression in A549 cells. The enhanced expression of PGE2 by NTHi infection was significantly decreased by pre-treatment of COX-2 specific inhibitor, but not by COX-1 inhibitor. NTHi induced COX-2 expression was mediated by TLR2 in the epithelial cell <it>in vitro </it>and in the lungs of mice <it>in vivo</it>. NTHi induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B. Moreover, the expressions of COX-2 and PGE2 were significantly inhibited by specific inhibitors of p38 MAPK and NF-kappa B. However, NTHi-induced DNA binding activity of NF-kappa B was not affected by the inhibition of p38 MAPK.</p> <p>Conclusion</p> <p>NTHi induces COX-2 and PGE2 expression in a p38 MAPK and NF-kappa B-dependent manner through TLR2 in lung epithelial cells <it>in vitro </it>and lung tissues <it>in vivo</it>. The full understanding of the role of endogenous anti-inflammatory PGE2 and its regulation will bring new insight to the resolution of inflammation in pulmonary bacterial infections.</p
- …