3 research outputs found

    The Role of Thioredoxin Reductases in Brain Development

    Get PDF
    The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells

    Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation

    No full text
    Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostaglandin E2 receptor, EP1, as a key factor in the signaling pathway that mediates seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier. In the rat pilocarpine model, status epilepticus significantly increased P-glycoprotein expression by 92 to 197% in the hippocampal hilus and granule cell layer as well as the piriform cortex. The EP1 receptor antagonist 8-chlorodibenz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, 2-[1-oxo-3-(4- pyridinyl)propyl]hydrazide hydrochloride (SC-51089) abolished seizure-induced P-glycoprotein up-regulation and retained its expression at the control level. The control of P-glycoprotein expression despite prolonged seizure activity suggests that EP1 receptor antagonism will also improve antiepileptic drug efficacy. Preliminary evidence for this concept has been obtained using a massive kindling paradigm during which animals received a subchronic SC-51089 treatment. After withdrawal of the EP1 receptor antagonist, a low dose of the P-glycoprotein substrate phenobarbital resulted in an anticonvulsant effect in this pretreated group, whereas the same dosage of phenobarbital did not exert a significant effect in the respective control group. In conclusion, our data demonstrate that EP1 is a key signaling factor in the regulatory pathway that drives P-glycoprotein up-regulation during seizures. These findings suggest new intriguing possibilities to prevent and interrupt P-glycoprotein overexpression in epilepsy. Future studies are necessary to further evaluate the appropriateness of the strategy to enhance the efficacy of antiepileptic drugs
    corecore