4 research outputs found

    ANTIBACTERIAL PROPERTIES AND DRYING EFFECTS OF FLAX DENIM AND ANTIBACTERIAL PROPERTIES OF NONWOVEN FLAX FABRIC

    Get PDF
    A modification of “AATCC Test Method 100-1999” was used for assaying for bacteriostatic/antibacterial properties of denim containing various flax concentrations. Since no direct evidence that increasing the flax content of fabric imparted the fabric with increased bacteriostatic properties was found against the control bacteria, Staphylococcus aureus and Klebsiella pneumoniae, other possible explanations for the long held presumption that flax fabric exhibited antibacterial properties was sought. Because the appearance of having antibacterial or bacteriostatic properties might be imitated if the flax content would decrease the time fabric would be moist enough for bacterial growth, the effect of drying was evaluated. When flax fabric was saturated and the moisture lost during incubation was measured, there was no improved drying associated with increased flax content. When untreated nonwoven flax was evaluated as possibly containing more ‘antibacterial’ or bacteriostatic components than scoured nonwoven flax material, the population densities increased. This increase suggests that the unscoured nonwoven flax contain compo-nents that support bacterial growth to the extent that bacteriostatic or antibacterial components, if any, are overwhelmed by the components that support bacterial growth. In tests involving the control bacteria, Staphylococcus aureus and Klebsiella pneumoniae, increasing the flax content of flax fabric did not demonstrate increased antibacterial properties

    Modifications caused by enzyme-retting and their effect on composite performance

    Get PDF
    Bethune seed flax was collected from Canada with seed removed using a stripper header and straw pulled and left in field for several weeks. Unretted straw was decorticated providing a coarse fiber bundle feedstock for enzyme treatments. Enzyme treatments using a bacterial pectinolytic enzyme with lyase activity were conducted in lab-scale reactors. Four fiber specimens were created: no retting, minimal retting, moderate retting, and full retting. Fiber characterization tests: strength, elongation, diameter, metal content, wax content, and pH were conducted with significant differences between fibers. Thermosetting vinyl ester resin was used to produce composite panels via vacuum-assisted infusion. Composite performance was evaluated using fiber bundle pull-out, tensile, impact, and interlaminar shear tests. Composite tests indicate that composite panels are largely unchanged among fiber samples. Variation in composite performance might not be realized due to poor interfacial bonding being of larger impact than the more subtle changes incurred by the enzyme treatment.Peer reviewed: YesNRC publication: Ye
    corecore