2,750 research outputs found

    Discovery of a Quasar with Double-Peaked Broad Balmer Emission Lines

    Full text link
    Most massive galaxies contain a supermassive black hole (SMBH) at their center. When galaxies merge, their SMBHs sink to the center of the new galaxy where they are thought to eventually merge. During this process an SMBH binary is formed. The presence of two sets of broad emission lines in the optical spectrum of an active galactic nucleus (AGN) has been interpreted as evidence for two broad line regions (BLR), one surrounding each SMBH in a binary. We modeled the broad Balmer emission lines in SDSS spectra of 373 extreme variability AGNs using one broad and several narrow Gaussian components. We report on the discovery of SDSS J021647.53−-011341.5 (hereafter J0216) as a double-peaked broad emission line source. Among the 373 AGNs there were five sources that are known double-peaked emission line sources. Three of these have been reported as candidate SMBH binaries in previous studies. We present all six objects and their double-peaked broad Balmer emission lines, and discuss the implications for a tidal disruption event (TDE) interpretation of the extreme variability assuming the double-peaked sources are SMBH binaries.Comment: 6 pages, 1 figure, 1 table. Accepted for publication in MNRA

    Origin of the large thermoelectric power in oxygen-variable RBaCo_{2}O_{5+x} (R=Gd, Nd)

    Full text link
    Thermoelectric properties of GdBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x} single crystals have been studied upon continuous doping of CoO_2 planes with either electrons or holes. The thermoelectric response and the resistivity behavior reveal a hopping character of the transport in both compounds, providing the basis for understanding the recently found remarkable divergence of the Seebeck coefficient at x=0.5. The doping dependence of the thermoelectric power evinces that the configurational entropy of charge carriers, enhanced by their spin and orbital degeneracy, plays a key role in the origin of the large thermoelectric response in these correlated oxides.Comment: 5 pages, 4 figures, accepted for publication in PR

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    The hard quiescent spectrum of the neutron-star X-ray transient EXO 1745-248 in the globular cluster Terzan 5

    Full text link
    We present a Chandra observation of the globular cluster Terzan 5 during times when the neutron-star X-ray transient EXO 1745-248 located in this cluster was in its quiescent state. We detected the quiescent system with a (0.5-10 keV) luminosity of ~2 x 10^{33} ergs/s. This is similar to several other neutron-star transients observed in their quiescent states. However, the quiescent X-ray spectrum of EXO 1745--48 was dominated by a hard power-law component instead of the soft component that usually dominates the quiescent emission of other neutron-star X-ray transients. This soft component could not conclusively be detected in EXO 1745-248 and we conclude that it contributed at most 10% of the quiescent flux in the energy range 0.5-10 keV. EXO 1745-248 is only the second neutron-star transient whose quiescent spectrum is dominated by the hard component (SAX J1808.4-3658 is the other one). We discuss possible explanations for this unusual behavior of EXO 1745-248, its relationship to other quiescent neutron-star systems, and the impact of our results on understanding quiescent X-ray binaries. We also discuss the implications of our results on the way the low-luminosity X-ray sources in globular clusters are classified.Comment: Accepted by ApJ Main Journal, September 22, 2004. Figure 2 is a color figur

    Spin Excitation Spectrum of La1−xAx_{1-x}A_xMnO3_3

    Full text link
    As an effective model to describe perovskite-type manganates (La,AA)MnO3_3, the double-exchange model on a cubic lattice is investigated. Spin excitation spectrum of the model in the ground state is studied using the spin wave approximation. Spin wave dispersion relation observed in the inelastic neutron scattering experiment of La0.7_{0.7}Pb0.3_{0.3}MnO3_3 is reproduced. Effective values for the electron bandwidth as well as Hund's coupling is estimated from the data.Comment: 10 pages LaTeX including 4 PS figure

    A robust subspace based approach to feedforward control of broadband disturbances on a six-degrees-of-freedom vibration isolation set-up

    Get PDF
    The contribution of this paper is twofold. First, the paper introduces a novel hybrid vibration isolation approach which uses a combination of passive and active vibration control techniques to provide additional design freedom. The approach can be used to meet higher design requirements with respect to vibration isolation. To illustrate the feasibility of the approach, a stiff hybrid sixdegrees-of-freedom vibration isolation set-up will be presented. The objective of the set-up is to investigate if the receiver structure can be isolated from the source structure by six hybrid vibration isolation mounts, such that disturbances induced by the source structure are isolated from the receiver structure. Vibration isolation is established by minimizing signals from six acceleration sensor outputs and by steering six piezo-electric actuator inputs. Our second contribution is that a state space based fixed gain H2 controller is designed, implemented and validated. Real-time broadband feedforward control results are presented (between 0 - 1 kHz) which show that an average reduction of 8.0 dB is achieved in the error sensor outputs in real-time

    Electronic and magnetic states in doped LaCoO_3

    Full text link
    The electronic and magnetic states in doped perovskite cobaltites, (La, Sr)CoO_3, are studied in the numerically exact diagonalization method on Co_2O_{11} clusters. For realistic parameter values, it is shown that a high spin state and an intermediate spin state coexist in one-hole doped clusters due to strong p-d mixing. The magnetic states in the doped cobaltites obtained in the calculation explain various experimental results.Comment: 4 pages, 2 figures, epsfj.st
    • …
    corecore